clusterMixedData {MixAll} | R Documentation |
Create an instance of the [ClusterMixedDataModel
] class
Description
This function computes the optimal mixture model for mixed data according
to the criterion
among the number of clusters given in
nbCluster
using the strategy specified in [strategy
].
Usage
clusterMixedData(
data,
models,
nbCluster = 2,
strategy = clusterStrategy(),
criterion = "ICL",
nbCore = 1
)
Arguments
data |
[ |
models |
a [ |
nbCluster |
[ |
strategy |
a [ |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ICL", "ML". Default is "ICL". |
nbCore |
integer defining the number of processors to use (default is 1, 0 for all). |
Value
An instance of the [ClusterMixedDataModel
] class.
Author(s)
Serge Iovleff
Examples
## A quantitative example with the heart disease data set
data(HeartDisease.cat)
data(HeartDisease.cont)
## with default values
ldata = list(HeartDisease.cat, HeartDisease.cont);
models = c("categorical_pk_pjk","gaussian_pk_sjk")
model <- clusterMixedData(ldata, models, nbCluster=2:5, strategy = clusterFastStrategy())
## get summary
summary(model)
## get estimated missing values
missingValues(model)
## print model (a very detailed output)
print(model)
## use graphics functions
plot(model)