clusterCategorical {MixAll} | R Documentation |
Create an instance of the [ClusterCategorical
] class
Description
This function computes the optimal Categorical mixture model according
to the criterion
among the list of model given in models
and the number of clusters given in nbCluster
, using the strategy
specified in strategy
.
Usage
clusterCategorical(
data,
nbCluster = 2,
models = clusterCategoricalNames(probabilities = "free"),
strategy = clusterStrategy(),
criterion = "ICL",
nbCore = 1
)
Arguments
data |
a data.frame or a matrix containing the data. Rows correspond to observations and columns correspond to variables. data will be coerced as an integer matrix. If data set contains NA values, they will be estimated during the estimation process. |
nbCluster |
[ |
models |
[ |
strategy |
a [ |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ICL", "ML". Default is "ICL". |
nbCore |
integer defining the number of processors to use (default is 1, 0 for all). |
Value
An instance of the [ClusterCategorical
] class.
Author(s)
Serge Iovleff
Examples
## A quantitative example with the birds data set
data(birds)
## add 10 missing values
x = as.matrix(birds); n <- nrow(x); p <- ncol(x)
indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2)
x[indexes] <- NA
## estimate model (using fast strategy, results may be misleading)
model <- clusterCategorical( data=x, nbCluster=2:3
, models=c( "categorical_pk_pjk", "categorical_p_pjk")
, strategy = clusterFastStrategy()
)
## use graphics functions
plot(model)
## get summary
summary(model)
## print model (a detailed and very long output)
print(model)
## get estimated missing values
missingValues(model)