clusterAlgo {MixAll} | R Documentation |
Create an instance of the [ClusterAlgo
] class
Description
There is three algorithms and two stopping rules possibles for an algorithm.
Algorithms:
-
EM
: The Expectation Maximisation algorithm -
CEM
: The Classification EM algorithm -
SEM
: The Stochastic EM algorithm -
SemiSEM
: The Semi-Stochastic EM algorithm
-
Stopping rules:
-
nbIteration
: Set the maximum number of iterations -
epsilon
: Set relative increase of the log-likelihood criterion
-
Default values are
200
nbIteration
ofEM
with anepsilon
value of1.e-8
.
The epsilon value is not used when the algorithm is "SEM" or "SemiSEM".
Usage
clusterAlgo(algo = "EM", nbIteration = 200, epsilon = 1e-07)
Arguments
algo |
character string with the estimation algorithm. Possible values are "EM", "SEM", "CEM", "SemiSEM". Default value is "EM". |
nbIteration |
Integer defining the maximal number of iterations. Default value is 200. |
epsilon |
Real defining the epsilon value for the algorithm. Not used by the "SEM" and "SemiSEM" algorithms. Default value is 1.e-7. |
Value
a [ClusterAlgo
] object
Author(s)
Serge Iovleff
Examples
clusterAlgo()
clusterAlgo(algo="SEM", nbIteration=50)
clusterAlgo(algo="CEM", epsilon = 1e-06)