estStrength {MigConnectivity} | R Documentation |
Estimate MC, migratory connectivity strength
Description
Resampling of uncertainty for MC (migratory connectivity strength) from estimates of psi (transition probabilities) and/or relative abundance. Psi estimates can come from an estMigConnectivity object, an RMark psi matrix, MCMC samples, or other samples expressed in array form. Abundance estimates for each origin site can be either just point estimates (no uncertainty propagated) or MCMC samples. Other inputs include distances between origin sites, distances between target sites, and sample size used to estimate psi.
Usage
estStrength(
originDist,
targetDist,
originRelAbund,
psi,
sampleSize = NULL,
originSites = NULL,
targetSites = NULL,
originNames = NULL,
targetNames = NULL,
nSamples = 1000,
row0 = 0,
verbose = 0,
alpha = 0.05,
approxSigTest = FALSE,
sigConst = 0,
maintainLegacyOutput = FALSE,
returnAllInput = TRUE
)
Arguments
originDist |
Distances between the B origin sites. Symmetric B by B matrix |
targetDist |
Distances between the W target sites. Symmetric W by W matrix |
originRelAbund |
Relative abundance estimates at B origin sites. Either
a numeric vector of length B that sums to 1, or an mcmc object (such as is
produced by |
psi |
Transition probabilities between B origin and W target sites. Either a matrix with B rows and W columns where rows sum to 1, an array with dimensions x, B, and W (with x samples of the transition probability matrix from another model), an 'estPsi' object (result of calling estTransition), or a MARK object with estimates of transition probabilities |
sampleSize |
Total sample size of animals that psi will be estimated from. Should be the number of animals released in one of the origin sites and observed in one of the target sites (or vice-versa). Optional, but recommended, unless psi is an estPsi object (in which case this function can pull it from there) |
originSites |
If |
targetSites |
If |
originNames |
Optional. Vector of names for the origin sites. Mostly for internal use |
targetNames |
Optional. Vector of names for the target sites. Mostly for internal use |
nSamples |
Number of times to resample |
row0 |
If |
verbose |
0 (default) to 2. 0 prints no output during run. 1 prints a progress update and summary every 100 samples. 2 prints a progress update and summary every sample |
alpha |
Level for confidence/credible intervals provided. Default (0.05) gives 95 percent CI |
approxSigTest |
Should function compute approximate one-sided significance tests (p-values) for MC from the resampling? Default is FALSE |
sigConst |
Value to compare MC to in significance test. Default is 0 |
maintainLegacyOutput |
version 0.4.0 of |
returnAllInput |
if TRUE (the default) the output includes all of the inputs. If FALSE, only the inputs currently used by another MigConnectivity function are included in the output. |
Value
estStrength
returns a list with the elements:
MC
List containing estimates of migratory connectivity strength:
sample
nSamples
sampled values for MC. Provided to allow the user to compute own summary statistics.mean
Mean ofMC$sample
. Main estimate of MC, incorporating parametric uncertainty.se
Standard error of MC, estimated from SD ofMC$sample
.simpleCI
Default1 - alpha
confidence interval for MC, estimated asalpha/2
and1 - alpha/2
quantiles ofMC$sample
.bcCI
Bias-corrected1 - alpha
confidence interval for MC. May be preferable toMC$simpleCI
whenMC$mean
is the best estimate of MC.MC$simpleCI
is preferred whenMC$median
is a better estimator. WhenMC$mean==MC$median
, these should be identical. Estimated as thepnorm(2 * z0 + qnorm(alpha / 2))
andpnorm(2 * z0 + qnorm(1 - alpha / 2))
quantiles ofMC$sample
, where z0 is the proportion ofMC$sample < MC$mean
.hpdCI
1 - alpha
credible interval for MC, estimated using the highest posterior density (HPD) method.median
Median of MC, alternate point estimate also including parametric uncertainty.point
Simple point estimate of MC, using the point estimates ofpsi
andoriginRelAbund
(usually the mean values), not accounting for sampling error.simpleP
Approximate p-value for MC, estimated as the proportion of bootstrap iterations where MC <sigConst
(or MC >sigConst
ifpointMC < sigConst
). Note that if the proportion is 0, a default value of 0.5 /nSamples
is provided, but this is best interpreted as p < 1 /nSamples
. NULL whenapproxSigTest==FALSE
.bcP
Approximate bias-corrected p-value for MC, estimated aspnorm(qnorm(simpleP) - 2 * z0)
, where z0 is the proportion ofsampleMC < meanMC
. May be a better approximation of the p-value thansimpleP
, but many of the same limitations apply. NULL whenapproxSigTest==FALSE
.
input
List containing the inputs to
estStrength
.
See Also
calcMC
, estTransition
,
estMC
, estMantel
,
plot.estMigConnectivity
Examples
set.seed(101)
# Uncertainty in detection (RMark estimates) with equal abundances
# Number of resampling iterations for generating confidence intervals
nSamplesCMR <- 100
nSimulationsCMR <- 10
originPos13 <- matrix(c(rep(seq(-99, -81, 2), each = 10),
rep(seq(49, 31, -2), 10)), 100, 2)
targetPos13 <- matrix(c(rep(seq(-79, -61, 2), each = 10),
rep(seq(9, -9, -2), 10)), 100, 2)
originPosCMR <- rowsum(originPos13, c(rep(1:2, 5, each = 5),
rep(3:4, 5, each = 5))) / 25
originPosCMR
targetPosCMR <- rowsum(targetPos13, c(rep(1:2, 5, each = 5),
rep(3:4, 5, each = 5))) / 25
targetPosCMR
originDist <- distFromPos(originPosCMR, 'ellipsoid')
targetDist <- distFromPos(targetPosCMR, 'ellipsoid')
originRelAbundTrue <- rep(0.25, 4)
# the second intermediate psi scenario, the "low" level
psiTrue <- samplePsis[["Low"]]
trueMC <- calcMC(originDist, targetDist, originRelAbundTrue, psiTrue)
trueMC
# Storage matrix for samples
cmrMCSample <- matrix(NA, nSamplesCMR, nSimulationsCMR)
summaryCMR <- data.frame(Simulation = 1:nSimulationsCMR, True=trueMC,
mean=NA, se=NA, lcl=NA, ucl=NA)
# Get 'RMark' psi estimates and estimate MC from each
for (r in 1:nSimulationsCMR) {
cat("Simulation",r,"of",nSimulationsCMR,"\n")
# Note: getCMRexample() requires a valid internet connection and that GitHub
# is accessible
fm <- getCMRexample(r)
results <- estStrength(originRelAbund = originRelAbundTrue, psi = fm,
originDist = originDist, targetDist = targetDist,
originSites = 5:8, targetSites = c(3,2,1,4),
nSamples = nSamplesCMR, verbose = 0,
sampleSize = length(grep('[2-5]', fm$data$data$ch)))
cmrMCSample[ , r] <- results$MC$sample
summaryCMR$mean[r] <- results$MC$mean
summaryCMR$se[r] <- results$MC$se
# Calculate confidence intervals using quantiles of sampled MC
summaryCMR[r, c('lcl', 'ucl')] <- results$MC$simpleCI
}
summaryCMR <- transform(summaryCMR, coverage = (True>=lcl & True<=ucl))
summaryCMR
summary(summaryCMR)
biasCMR <- mean(summaryCMR$mean) - trueMC
biasCMR
mseCMR <- mean((summaryCMR$mean - trueMC)^2)
mseCMR
rmseCMR <- sqrt(mseCMR)
rmseCMR
# Simulation of BBS data to quantify uncertainty in relative abundance
nSamplesAbund <- 700 #1700 are stored
nSimulationsAbund <- 10
#\dontrun{
# nSamplesAbund <- 1700
#}
# Storage matrix for samples
abundMCSample <- matrix(NA, nSamplesAbund, nSimulationsAbund)
summaryAbund <- data.frame(Simulation = 1:nSimulationsAbund, True = trueMC,
mean = NA, se = NA, lcl = NA, ucl = NA)
for (r in 1:nSimulationsAbund) {
cat("Simulation",r,"of",nSimulationsAbund,"\n")
row0 <- nrow(abundExamples[[r]]) - nSamplesAbund
results <- estStrength(originRelAbund = abundExamples[[r]], psi = psiTrue,
originDist = originDist, targetDist = targetDist,
row0 = row0, nSamples = nSamplesAbund, verbose = 1)
abundMCSample[ , r] <- results$MC$sample
summaryAbund$mean[r] <- results$MC$mean
summaryAbund$se[r] <- results$MC$se
# Calculate confidence intervals using quantiles of sampled MC
summaryAbund[r, c('lcl', 'ucl')] <- results$MC$simpleCI
}
summaryAbund <- transform(summaryAbund, coverage = (True >= lcl & True <= ucl))
summaryAbund
summary(summaryAbund)
biasAbund <- mean(summaryAbund$mean) - trueMC
biasAbund
mseAbund <- mean((summaryAbund$mean - trueMC)^2)
mseAbund
rmseAbund <- sqrt(mseAbund)
rmseAbund
# Ovenbird example with GL and GPS data
data(OVENdata) # Ovenbird
nSamplesGLGPS <- 100 # Number of bootstrap iterations, set low for example
# Estimate transition probabilities
Combined.psi<-estTransition(isGL=OVENdata$isGL, #Light-level geolocator (T/F)
isTelemetry = !OVENdata$isGL,
geoBias = OVENdata$geo.bias, # Light-level GL location bias
geoVCov = OVENdata$geo.vcov, # Location covariance matrix
targetSites = OVENdata$targetSites, # Nonbreeding/target sites
originSites = OVENdata$originSites, # Breeding/origin sites
originPoints = OVENdata$originPoints, # Capture Locations
targetPoints = OVENdata$targetPoints, #Device target locations
verbose = 3, # output options
nSamples = nSamplesGLGPS, # This is set low for example
resampleProjection = sf::st_crs(OVENdata$targetPoints),
nSim = 1000)
# Can estimate MC from previous psi estimate
Combo.MC1 <- estStrength(targetDist = OVENdata$targetDist, # Distance matrix
originDist = OVENdata$originDist, # Distance matrix
targetSites = OVENdata$targetSites, # Target sites
originSites = OVENdata$originSites, # Breeding sites
psi = Combined.psi,
originRelAbund = OVENdata$originRelAbund,
nSamples = nSamplesGLGPS,
sampleSize = nrow(OVENdata$targetPoints))
Combo.MC1
# Doesn't have to be an estPsi object - can simply be array of psi samples
Combo.MC2 <- estStrength(targetDist = OVENdata$targetDist,
originDist = OVENdata$originDist,
targetSites = OVENdata$targetSites,
originSites = OVENdata$originSites,
psi = Combined.psi$psi$sample, # Array of samples
originRelAbund = OVENdata$originRelAbund,
nSamples = nSamplesGLGPS,
sampleSize = nrow(OVENdata$targetPoints))
Combo.MC2