S2N {MiRSEA} | R Documentation |
calculate signal to noise ratio for microRNAs(miRNAs)
Description
This function calculate the signal to noise ratio for miRNAs for the actual phenotype and also random permutations
Usage
S2N(A, class.labels, miR.labels, nperm )
Arguments
A |
Matrix of miRNAs expression values (rows are miRNAs, columns are samples) |
class.labels |
Phenotype of class disticntion of interest. A vector of binary labels having first the 1's and then the 0's |
miR.labels |
miRNA labels,Vector of probe ids or accession numbers for the rows of the expression matrix |
nperm |
Number of random permutations to perform |
Details
The function uses matrix operations to implement the signal to noise calculation in stages and achieves fast execution speed.
Value
s2n.matrix |
Matrix with random permuted or bootstraps signal to noise ratios (rows are miRNAs, columns are permutations or bootstrap subsamplings |
obs.s2n.matrix |
Matrix with observed signal to noise ratios (rows are miRNAs, columns are boostraps subsamplings. If fraction is set to 1.0 then all the columns have the same values |
Author(s)
Junwei Hanhanjunwei1981@163.com,Siyao Liu liusiyao29@163.com
References
Subramanian A, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102(43):15545-15550.
See Also
Examples
##Matrix of miRNAs expression values
A<-matrix(runif(200),10,20)
##class.labels("0" or "1")
a1<-rep(0,20)
a1[sample(1:20,5)]=1
a1<-sort(a1,decreasing=FALSE)
#calculate signal to noise ratio for example data
M1<-S2N(A, class.labels=a1, miR.labels=seq(1,10), nperm=100)
#show actual results for top five in the matrix
M1$obs.s2n.matrix[1:5,1]
#show permutation results
M1$s2n.matrix[1:5,1:5]