lincsCorrelate {MetaIntegrator} | R Documentation |
Run Shane's LINCS Correlate on MetaIntegrator
Description
Run Shane's LINCS Correlate on MetaIntegrator
Usage
lincsCorrelate(metaObject, filterObject, dataset = "CP",
hit.number.hm = 20, direction = "reverse", cor.method = "pearson",
drop.string = NULL, just_clin = F, show_clin = F, gene_ann = F)
Arguments
metaObject |
a Meta object which must have the $originalData populated |
filterObject |
a MetaFilter object containing the signature genes that will be used for calculating the score |
dataset |
The LINCS dataset to use. One of "CP" (drugs),"SH" (shRNA),"OE" (over-expression), "LIG" (ligands),"MUT" (mutants) (default: CP) |
hit.number.hm |
How many hits to show in a heatmap (default: 20) |
direction |
one of "reverse", "aggravate", or "absolute" (default: "reverse") for whether you want to reverse the signature, aggravate it, or just want the top absolute hits. |
cor.method |
method to use for correlation (pearson or spearman) (default: "pearson") |
drop.string |
lets you include a string to drop drugs that contain a regular expression. Useful for getting rid of screening hits. One useful option is "^BRD", which gets rid of all of the Broad screening hits that aren't characterized. (default: NULL) |
just_clin |
only consider clinically relevant results (default: FALSE) |
show_clin |
Generate a list of clinically relevant results (default: FALSE) |
gene_ann |
whether to annotate genes (default: FALSE) |
Value
The full list of correlations as well as the dataframe with the expression of the top hits. Also generates the heatmap of the top hits.
Examples
## Not run:
####### DATA SETUP ##########
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))
#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,
column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,
column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,
column= "disease state:ch1", diseaseTerms=c("SLE"))
#Remove the GPL97 platform that was downloaded
sleData$originalData$GSE11909_GPL97 <- NULL
#Run Meta-Analysis
sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)
#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,
effectSizeThresh = 1, FDRThresh = 0.05)
####### END DATA SETUP ##########
lincsCorrelate( metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]],
dataset = "CP", direction = "reverse")
## End(Not run)