Plot.PP {MVar} | R Documentation |
Graphics of the Projection Pursuit (PP).
Description
Graphics of the Projection Pursuit (PP).
Usage
Plot.PP(PP, titles = NA, xlabel = NA, ylabel = NA, posleg = 2, boxleg = TRUE,
size = 1.1, grid = TRUE, color = TRUE, classcolor = NA, linlab = NA,
axesvar = TRUE, axes = TRUE, savptc = FALSE, width = 3236, height = 2000,
res = 300, casc = TRUE)
Arguments
PP |
Data of the PP_Optimizer function. |
titles |
Titles of the graphics, if not set, assumes the default text. |
xlabel |
Names the X axis, if not set, assumes the default text. |
ylabel |
Names the Y axis, if not set, assumes the default text. |
posleg |
0 with no caption, |
boxleg |
Puts the frame in the caption (default = TRUE). |
size |
Size of the points in the graphs. |
grid |
Put grid on graphs (default = TRUE). |
color |
Colored graphics (default = TRUE). |
classcolor |
Vector with the colors of the classes. |
linlab |
Vector with the labels for the observations. |
axesvar |
Puts axes of rotation of the variables, only when dimproj > 1 (default = TRUE). |
axes |
Plots the X and Y axes (default = TRUE). |
savptc |
Saves graphics images to files (default = FALSE). |
width |
Graphics images width when savptc = TRUE (defaul = 3236). |
height |
Graphics images height when savptc = TRUE (default = 2000). |
res |
Nominal resolution in ppi of the graphics images when savptc = TRUE (default = 300). |
casc |
Cascade effect in the presentation of the graphics (default = TRUE). |
Value
Graph of the evolution of the indices, and graphs whose data were reduced in two dimensions.
Author(s)
Paulo Cesar Ossani
Marcelo Angelo Cirillo
See Also
PP_Optimizer
and PP_Index
Examples
data(iris) # dataset
# Example 1 - Without the classes in the data
data <- iris[,1:4]
findex <- "kurtosismax" # index function
dim <- 1 # dimension of data projection
sphere <- TRUE # spherical data
res <- PP_Optimizer(data = data, class = NA, findex = findex,
optmethod = "GTSA", dimproj = dim, sphere = sphere,
weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
eps = 1e-3, maxiter = 500, half = 30)
Plot.PP(res, titles = NA, posleg = 1, boxleg = FALSE, color = TRUE,
linlab = NA, axesvar = TRUE, axes = TRUE, savptc = FALSE,
width = 3236, height = 2000, res = 300, casc = FALSE)
# Example 2 - With the classes in the data
class <- iris[,5] # data class
res <- PP_Optimizer(data = data, class = class, findex = findex,
optmethod = "GTSA", dimproj = dim, sphere = sphere,
weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
eps = 1e-3, maxiter = 500, half = 30)
tit <- c(NA,"Graph example") # titles for the graphics
Plot.PP(res, titles = tit, posleg = 1, boxleg = FALSE, color = TRUE,
classcolor = c("blue3","red","goldenrod3"), linlab = NA,
axesvar = TRUE, axes = TRUE, savptc = FALSE, width = 3236,
height = 2000, res = 300, casc = FALSE)
# Example 3 - Without the classes in the data, but informing
# the classes in the plot function
res <- PP_Optimizer(data = data, class = NA, findex = "Moment",
optmethod = "GTSA", dimproj = 2, sphere = sphere,
weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
eps = 1e-3, maxiter = 500, half = 30)
lin <- c(rep("a",50),rep("b",50),rep("c",50)) # data class
Plot.PP(res, titles = NA, posleg = 1, boxleg = FALSE, color = TRUE,
linlab = lin, axesvar = TRUE, axes = TRUE, savptc = FALSE,
width = 3236, height = 2000, res = 300, casc = FALSE)
# Example 4 - With the classes in the data, but not informed in plot function
class <- iris[,5] # data class
dim <- 2 # dimension of data projection
findex <- "lda" # index function
res <- PP_Optimizer(data = data, class = class, findex = findex,
optmethod = "GTSA", dimproj = dim, sphere = sphere,
weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
eps = 1e-3, maxiter = 500, half = 30)
tit <- c("",NA) # titles for the graphics
Plot.PP(res, titles = tit, posleg = 1, boxleg = FALSE, color = TRUE,
linlab = NA, axesvar = TRUE, axes = TRUE, savptc = FALSE,
width = 3236, height = 2000, res = 300, casc = FALSE)