PCA {MVar} | R Documentation |
Principal Components Analysis (PCA).
Description
Performs principal component analysis (PCA) in a data set.
Usage
PCA(data, type = 1)
Arguments
data |
Data to be analyzed. |
type |
1 for analysis using the covariance matrix (default), |
Value
mtxC |
Matrix of covariance or correlation according to "type". |
mtxAutvlr |
Matrix of eigenvalues (variances) with the proportions and proportions accumulated. |
mtxAutvec |
Matrix of eigenvectors - principal components. |
mtxVCP |
Matrix of covariance of the principal components with the original variables. |
mtxCCP |
Matrix of correlation of the principal components with the original variables. |
mtxscores |
Matrix with scores of the principal components. |
Author(s)
Paulo Cesar Ossani
Marcelo Angelo Cirillo
References
Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, Arlington, v. 24, p. 417-441, Sept. 1933.
Mingoti, S. A. Analise de dados atraves de metodos de estatistica multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.
Ferreira, D. F. Estatistica Multivariada. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.
Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.
See Also
Examples
data(DataQuan) # set of quantitative data
data <- DataQuan[,2:8]
rownames(data) <- DataQuan[1:nrow(DataQuan),1]
pc <- PCA(data, 2) # performs the PCA
print("Covariance matrix / Correlation:"); round(pc$mtxC,2)
print("Principal Components:"); round(pc$mtxAutvec,2)
print("Principal Component Variances:"); round(pc$mtxAutvlr,2)
print("Covariance of the Principal Components:"); round(pc$mtxVCP,2)
print("Correlation of the Principal Components:"); round(pc$mtxCCP,2)
print("Scores of the Principal Components:"); round(pc$mtxscores,2)