FA {MVar} | R Documentation |
Factor Analysis (FA).
Description
Performs factorial analysis (FA) in a data set.
Usage
FA(data, method = "PC", type = 2, nfactor = 1, rotation = "None",
scoresobs = "Bartlett", converg = 1e-5, iteracao = 1000,
testfit = TRUE)
Arguments
data |
Data to be analyzed. |
method |
Method of analysis: |
type |
1 for analysis using the covariance matrix, |
rotation |
Type of rotation: "None" (default), "Varimax" and "Promax". |
nfactor |
Number of factors (default = 1). |
scoresobs |
Type of scores for the observations: "Bartlett" (default) or "Regression". |
converg |
Limit value for convergence to sum of the squares of the residuals for Maximum likelihood method (default = 1e-5). |
iteracao |
Maximum number of iterations for Maximum Likelihood method (default = 1000). |
testfit |
Tests the model fit to the method of Maximum Likelihood (default = TRUE). |
Value
mtxMC |
Matrix of correlation / covariance. |
mtxAutvlr |
Matrix of eigenvalues. |
mtxAutvec |
Matrix of eigenvectors. |
mtxvar |
Matrix of variances and proportions. |
mtxcarga |
Matrix of factor loadings. |
mtxvaresp |
Matrix of specific variances. |
mtxcomuna |
Matrix of commonalities. |
mtxresidue |
Matrix of residues. |
vlrsqrs |
Upper limit value for sum of squares of the residues. |
vlrsqr |
Sum of squares of the residues. |
mtxresult |
Matrix with all associated results. |
mtxscores |
Matrix with scores of the observations. |
coefscores |
Matrix with the scores of the coefficients of the factors. |
Author(s)
Paulo Cesar Ossani
Marcelo Angelo Cirillo
References
Mingot, S. A. Analise de dados atraves de metodos de estatistica multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.
Kaiser, H. F.The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187-200, 1958.
Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.
Ferreira, D. F. Estatistica Multivariada. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.
See Also
Examples
data(DataQuan) # data set
data <- DataQuan[,2:ncol(DataQuan)]
rownames(data) <- DataQuan[,1]
res <- FA(data, method = "PC", type = 2, nfactor = 3, rotation = "None",
scoresobs = "Bartlett", converg = 1e-5, iteracao = 1000,
testfit = TRUE)
print("Matrix with all associated results:"); round(res$mtxresult,3)
print("Sum of squares of the residues:"); round(res$vlrsqr,3)
print("Matrix of the factor loadings.:"); round(res$mtxcarga,3)
print("Matrix with scores of the observations:"); round(res$mtxscores,3)
print("Matrix with the scores of the coefficients of the factors:"); round(res$coefscores,3)