| Cluster {MVar} | R Documentation | 
Cluster Analysis.
Description
Performs hierarchical and non-hierarchical cluster analysis in a data set.
Usage
Cluster(data, titles = NA, hierarquic = TRUE, analysis = "Obs",  
        cor.abs = FALSE, normalize = FALSE, distance = "euclidean",  
        method = "complete", horizontal = FALSE, num.groups = 0,
        lambda = 2, savptc = FALSE, width = 3236, height = 2000, 
        res = 300, casc = TRUE)
Arguments
data | 
 Data to be analyzed.  | 
titles | 
 Titles of the graphics, if not set, assumes the default text.  | 
hierarquic | 
 Hierarchical groupings (default = TRUE), for non-hierarchical groupings (method K-Means), only for case 'analysis' = "Obs".  | 
analysis | 
 "Obs" for analysis on observations (default), "Var" for analysis on variables.  | 
cor.abs | 
 Matrix of absolute correlation case 'analysis' = "Var" (default = FALSE).  | 
normalize | 
 Normalize the data only for case 'analysis' = "Obs" (default = FALSE).  | 
distance | 
 Metric of the distances in case of hierarchical groupings: "euclidean" (default), "maximum", "manhattan", "canberra", "binary" or "minkowski". Case Analysis = "Var" the metric will be the correlation matrix, according to cor.abs.  | 
method | 
 Method for analyzing hierarchical groupings: "complete" (default), "ward.D", "ward.D2", "single", "average", "mcquitty", "median" or "centroid".  | 
horizontal | 
 Horizontal dendrogram (default = FALSE).  | 
num.groups | 
 Number of groups to be formed.  | 
lambda | 
 Value used in the minkowski distance.  | 
savptc | 
 Saves graphics images to files (default = FALSE).  | 
width | 
 Graphics images width when savptc = TRUE (defaul = 3236).  | 
height | 
 Graphics images height when savptc = TRUE (default = 2000).  | 
res | 
 Nominal resolution in ppi of the graphics images when savptc = TRUE (default = 300).  | 
casc | 
 Cascade effect in the presentation of the graphics (default = TRUE).  | 
Value
Several graphics.
tab.res | 
 Table with similarities and distances of the groups formed.  | 
groups | 
 Original data with groups formed.  | 
res.groups | 
 Results of the groups formed.  | 
R.sqt | 
 Result of the R squared.  | 
sum.sqt | 
 Total sum of squares.  | 
mtx.dist | 
 Matrix of the distances.  | 
Author(s)
Paulo Cesar Ossani
References
Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.
Mingoti, S. A. analysis de dados atraves de metodos de estatistica multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.
Ferreira, D. F. Estatistica Multivariada. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.
Examples
data(DataQuan) # set of quantitative data
data <- DataQuan[,2:8]
rownames(data) <- DataQuan[1:nrow(DataQuan),1]
res <- Cluster(data, titles = NA, hierarquic = TRUE, analysis = "Obs",
               cor.abs = FALSE, normalize = FALSE, distance = "euclidean", 
               method = "ward.D", horizontal = FALSE, num.groups = 2,
               savptc = FALSE, width = 3236, height = 2000, res = 300, 
               casc = FALSE)
print("R squared:"); res$R.sqt
# print("Total sum of squares:"); res$sum.sqt
print("Groups formed:"); res$groups
# print("Table with similarities and distances:"); res$tab.res
# print("Table with the results of the groups:"); res$res.groups
# print("Distance Matrix:"); res$mtx.dist 
 
write.table(file=file.path(tempdir(),"SimilarityTable.csv"), res$tab.res, sep=";",
            dec=",",row.names = FALSE) 
write.table(file=file.path(tempdir(),"GroupData.csv"), res$groups, sep=";",
            dec=",",row.names = TRUE) 
write.table(file=file.path(tempdir(),"GroupResults.csv"), res$res.groups, sep=";",
            dec=",",row.names = TRUE)