CCA {MVar} | R Documentation |
Canonical Correlation Analysis(CCA).
Description
Perform Canonical Correlation Analysis (CCA) on a data set.
Usage
CCA(X = NULL, Y = NULL, type = 1, test = "Bartlett", sign = 0.05)
Arguments
X |
First group of variables of a data set. |
Y |
Second group of variables of a data set. |
type |
1 for analysis using the covariance matrix (default), |
test |
Test of significance of the relationship between the group X and Y: |
sign |
Test significance level (default 5%). |
Value
Cxx |
Covariance matrix or correlation Cxx. |
Cyy |
Covariance matrix or correlation Cyy. |
Cxy |
Covariance matrix or correlation Cxy. |
Cyx |
Covariance matrix or correlation Cyx. |
var.UV |
Matrix with eigenvalues (variances) of the canonical pairs U and V. |
corr.UV |
Matrix of the correlation of the canonical pairs U and V. |
coef.X |
Matrix of the canonical coefficients of the group X. |
coef.Y |
Matrix of the canonical coefficients of the group Y. |
corr.X |
Matrix of the correlations between canonical variables and the original variables of the group X. |
corr.Y |
Matrix of the correlations between the canonical variables and the original variables of the group Y. |
score.X |
Matrix with the scores of the group X. |
score.Y |
Matrix with the scores of the group Y. |
sigtest |
Returns the significance test of the relationship between group X and Y: "Bartlett" (default) or "Rao". |
Author(s)
Paulo Cesar Ossani
Marcelo Angelo Cirillo
References
Mingoti, S. A. Analise de dados atraves de metodos de estatistica multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.
Ferreira, D. F. Estatistica Multivariada. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.
Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.
Lattin, J.; Carrol, J. D.; Green, P. E. Analise de dados multivariados. 1th. ed. Sao Paulo: Cengage Learning, 2011. 455 p.
See Also
Examples
data(DataMix) # data set
data <- DataMix[,2:ncol(DataMix)]
rownames(data) <- DataMix[,1]
X <- data[,1:2]
Y <- data[,5:6]
res <- CCA(X, Y, type = 2, test = "Bartlett", sign = 0.05)
print("Matrix with eigenvalues (variances) of the canonical pairs U and V:"); round(res$var.UV,3)
print("Matrix of the correlation of the canonical pairs U and V:"); round(res$corr.UV,3)
print("Matrix of the canonical coefficients of the group X:"); round(res$coef.X,3)
print("Matrix of the canonical coefficients of the group Y:"); round(res$coef.Y,3)
print("Matrix of the correlations between the canonical
variables and the original variables of the group X:"); round(res$corr.X,3)
print("Matrix of the correlations between the canonical
variables and the original variables of the group Y:"); round(res$corr.Y,3)
print("Matrix with the scores of the group X:"); round(res$score.X,3)
print("Matrix with the scores of the group Y:"); round(res$score.Y,3)
print("test of significance of the canonical pairs:"); res$sigtest