MLCM-package |
Maximum Likelihood Conjoint Measurement |
anova.mlcm |
Analysis of Deviance for Maximum Likelihood Conjoint Measurement Model Fits |
as.mlcm.df |
Coerce data frame to mlcm.df |
binom.diagnostics |
Diagnostics for Binary GLM |
boot.mlcm |
Resampling of an Estimated Conjoint Measurement Scale |
BumpyGlossy |
Conjoint Measurement Data for Bumpiness and Glossiness |
fitted.mlcm |
Fitted Responses for a Conjoint Measurement Scale |
GlossyBumpy |
Conjoint Measurement Data for Bumpiness and Glossiness |
lines.mlcm |
Plot an mlcm Object |
logLik.mlcm |
Extract Log-Likelihood from mlcm Object |
make.wide |
Create data frame for Fitting Conjoint Measurment Models by glm |
make.wide.full |
Create data frame for Fitting Conjoint Measurment Models by glm |
MLCM |
Maximum Likelihood Conjoint Measurement |
mlcm |
Fit Conjoint Measurement Models by Maximum Likelihood |
mlcm.default |
Fit Conjoint Measurement Models by Maximum Likelihood |
mlcm.formula |
Fit Conjoint Measurement Models by Maximum Likelihood |
plot.mlcm |
Plot an mlcm Object |
plot.mlcm.df |
Create Conjoint Proportion Plot from mlcm.df Object |
plot.mlcm.diag |
Diagnostics for Binary GLM |
points.mlcm |
Plot an mlcm Object |
predict.mlcm |
Predict Method for MLCM Objects |
print.mlcm |
Fit Conjoint Measurement Models by Maximum Likelihood |
print.summary.mlcm |
Summary Method for mlcm objects |
summary.mlcm |
Summary Method for mlcm objects |
Texture |
Three-way Conjoint Measurement Data for Texture Regularity. |