interpolate_signal {MIMSunit} | R Documentation |
Interpolate missing points and unify sampling rate for multi-channel signal
Description
interpolate_signal
applies different interpolation algorithms to the
input multi-channel signal to fill in the missing samples and harmonizes the
sampling rate.
Usage
interpolate_signal(
df,
method = "spline_natural",
sr = 100,
st = NULL,
et = NULL
)
Arguments
df |
dataframe. Input multi-channel accelerometer signal. |
method |
string. Interpolation algorithms. Could be "spline_natural",
"spline_improved" or "spline_fmm": see |
sr |
number. Sampling rate in Hz of the output signal. Default is 100. |
st |
POSIXct date. The start time for interpolation. If it is
|
et |
POSIXct date. The end time for interpolation. If it is |
Value
dataframe. Interpolated signal.
How is it used in MIMS-unit algorithm?
This function is a utility
function that has been used in functions: extrapolate
, and
simulate_new_data
.
See Also
Other utility functions:
clip_data()
,
cut_off_signal()
,
parse_epoch_string()
,
sampling_rate()
,
segment_data()
,
simulate_new_data()
Examples
# Use sample data
df = sample_raw_accel_data
# Plot input
illustrate_signal(df, plot_maxed_out_line=FALSE)
# Interpolate to 100 Hz
sr = 100
# Interpolate the entire sequence of data
output = interpolate_signal(df, sr=sr)
# Plot output
illustrate_signal(output, plot_maxed_out_line=FALSE)
# Interpolate part of the sequence
output = interpolate_signal(df, sr=sr, st=df[10,1], et=df[100,1])
# Plot output
illustrate_signal(output, plot_maxed_out_line=FALSE)