do.MEGENA {MEGENA} | R Documentation |
MEGENA clustering + MHA
Description
multiscale clustering analysis (MCA) and multiscale hub analysis (MHA) pipeline
Usage
do.MEGENA(g,
do.hubAnalysis = TRUE,
mod.pval = 0.05,hub.pval = 0.05,remove.unsig = TRUE,
min.size = 10,max.size = 2500,
doPar = FALSE,num.cores = 4,n.perm = 100,singleton.size = 3,
save.output = FALSE)
Arguments
g |
igraph object of PFN. |
do.hubAnalysis |
TRUE/FALSE indicating to perform multiscale hub analysis (MHA) in downstream. Default is TRUE. |
mod.pval |
cluster significance p-value threshold w.r.t random planar networks |
hub.pval |
hub significance p-value threshold w.r.t random planar networks |
remove.unsig |
TRUE/FALSE indicating to remove insignificant clusters in MHA. |
min.size |
minimum cluster size |
max.size |
maximum cluster size |
doPar |
TRUE/FALSE indicating parallelization usage |
num.cores |
number of cores to use in parallelization. |
n.perm |
number of permutations to calculate hub significance p-values/cluster significance p-values. |
singleton.size |
Minimum module size to regard as non-singleton module. Default is 3. |
save.output |
TRUE/FALSE to save outputs from each step of analysis |
Details
Performs MCA and MHA by taking PFN as input. Returns a list object containing clustering outputs, hub analysis outputs, and node summary table.
Value
A series of output files are written in wkdir. Major outputs are,
module.output |
outputs from MCA |
hub.output |
outputs from MHA |
node.summary |
node table summarizing clustering results. |
Author(s)
Won-Min Song
Examples
## Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
## End(Not run)