| ComputePValue {MDFS} | R Documentation | 
Compute p-values from information gains and return MDFS
Description
Compute p-values from information gains and return MDFS
Usage
ComputePValue(
  IG,
  dimensions,
  divisions,
  response.divisions = 1,
  df = NULL,
  contrast.mask = NULL,
  ig.in.bits = TRUE,
  ig.doubled = FALSE,
  one.dim.mode = "exp",
  irr.vars.num = NULL,
  ign.low.ig.vars.num = NULL,
  min.irr.vars.num = NULL,
  max.ign.low.ig.vars.num = NULL,
  search.points = 8,
  level = 0.05
)
Arguments
| IG | max conditional information gains | 
| dimensions | number of dimensions | 
| divisions | number of divisions | 
| response.divisions | number of response divisions (i.e. categories-1) | 
| df | vector of degrees of freedom for each variable (optional) | 
| contrast.mask | boolean mask on  | 
| ig.in.bits | 
 | 
| ig.doubled | 
 | 
| one.dim.mode | 
 | 
| irr.vars.num | if not NULL, number of irrelevant variables, specified by the user | 
| ign.low.ig.vars.num | if not NULL, number of ignored low IG variables, specified by the user | 
| min.irr.vars.num | minimum number of irrelevant variables ( | 
| max.ign.low.ig.vars.num | maximum number of ignored low IG variables ( | 
| search.points | number of points in search procedure for the optimal number of ignored variables | 
| level | acceptable error level of goodness-of-fit one-sample Kolmogorov-Smirnov test (used only for warning) | 
Value
A data.frame with class set to MDFS. Can be coerced back to data.frame using as.data.frame.
The following columns are present:
-  IG– information gains (input copy)
-  chi.squared.p.value– chi-squared p-values
-  p.value– theoretical p-values
Additionally the following attributes are set:
-  run.params– run parameters
-  sq.dev– vector of square deviations used to estimate the number of irrelevant variables
-  dist.param– distribution parameter
-  err.param– squared error of the distribution parameter
-  fit.p.value– p-value of fit
Examples
ComputePValue(madelon$IG.2D, dimensions = 2, divisions = 1)