denoisePatches {MBCbook} | R Documentation |
Denoising of image patches
Description
Denoising of image patches based on the clustering of patches.
Usage
denoisePatches(Y,out,P,sigma=10)
Arguments
Y |
a data frame containing as rows the image patches to denoise |
out |
the mixmodCluster object that contains mixture parameters |
P |
the posterior probabilities that patches belong to the clusters |
sigma |
the noise standard deviation |
Value
A data fame of the denoised patches is returned.
Note
C. Bouveyron & J. Delon
Examples
Im = diag(16)
ImNoise = Im + rnorm(256,0,0.1)
X = imageToPatch(ImNoise,4)
out = mixmodCluster(X,10,model=mixmodGaussianModel(family=c("spherical")))
res = mixmodPredict(X,out@bestResult)
Xdenoised = denoisePatches(X,out,P = res@proba,sigma = 0.1)
ImRec = reconstructImage(Xdenoised,16,16)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,3))
imshow(Im); imshow(ImNoise); imshow(ImRec)
par(oldpar)
[Package MBCbook version 0.1.2 Index]