CreateMarvelObject.10x {MARVEL} | R Documentation |
Create Marvel object for droplet-based RNA-sequencing data
Description
Creates an S3 object named Marvel
for downstream analysis, specifically for droplet-based RNA-sequencing data.
Usage
CreateMarvelObject.10x(
gene.norm.matrix = NULL,
gene.norm.pheno = NULL,
gene.norm.feature = NULL,
gene.count.matrix = NULL,
gene.count.pheno = NULL,
gene.count.feature = NULL,
sj.count.matrix = NULL,
sj.count.pheno = NULL,
sj.count.feature = NULL,
pca = NULL,
gtf = NULL
)
Arguments
gene.norm.matrix |
Sparse matrix. UMI-collapsed, normalised, non-log2-transformed gene expression matrix. |
gene.norm.pheno |
Data frame. Sample metadata for annotating |
gene.norm.feature |
Data frame. Gene metadata for annotating |
gene.count.matrix |
Sparse matrix. UMI-collapsed, non-normalised (raw counts), non-log2-transformed gene expression matrix. |
gene.count.pheno |
Data frame. Sample metadata for annotating |
gene.count.feature |
Data frame. Gene metadata for annotating |
sj.count.matrix |
Sparse matrix. UMI-collapsed, non-normalised (raw counts), non-log2-transformed splice junction expression matrix. |
sj.count.pheno |
Data frame. Sample metadata for annotating |
sj.count.feature |
Data frame. Splice junction metadata for annotating |
pca |
Data frame. Coordinates of PCA/tSNE/UMAP. |
gtf |
Data frame. GTF used in cellranger. Will be used for annotating splice junctions downstream. |
Value
An object of class S3.
Examples
# Retrieve, observe format of pre-saved input files
marvel.demo.10x.raw <- readRDS(system.file("extdata/data",
"marvel.demo.10x.raw.rds",
package="MARVEL")
)
# Gene expression (Normalised)
# Matrix
df.gene.norm <- marvel.demo.10x.raw$gene.norm.matrix
df.gene.norm[1:5, 1:5]
# phenoData
df.gene.norm.pheno <- marvel.demo.10x.raw$sample.metadata
head(df.gene.norm.pheno)
# featureData
df.gene.norm.feature <- data.frame("gene_short_name"=rownames(df.gene.norm),
stringsAsFactors=FALSE
)
head(df.gene.norm.feature)
# Gene expression (Counts)
# Matrix
df.gene.count <- marvel.demo.10x.raw$gene.count.matrix
df.gene.count[1:5, 1:5]
# phenoData
df.gene.count.pheno <- data.frame("cell.id"=colnames(df.gene.count),
stringsAsFactors=FALSE
)
head(df.gene.count.pheno)
# featureData
df.gene.count.feature <- data.frame("gene_short_name"=rownames(df.gene.count),
stringsAsFactors=FALSE
)
head(df.gene.count.feature)
# SJ (Counts)
# Matrix
df.sj.count <- marvel.demo.10x.raw$sj.count.matrix
df.sj.count[1:5, 1:5]
# phenoData
df.sj.count.pheno <- data.frame("cell.id"=colnames(df.sj.count),
stringsAsFactors=FALSE
)
head(df.sj.count.pheno)
# featureData
df.sj.count.feature <- data.frame("coord.intron"=rownames(df.sj.count),
stringsAsFactors=FALSE
)
head(df.sj.count.feature)
# tSNE coordinates
df.coord <- marvel.demo.10x.raw$pca
head(df.coord)
# GTF
gtf <- marvel.demo.10x.raw$gtf
head(gtf)
# Create MARVEL object
marvel.demo.10x <- CreateMarvelObject.10x(gene.norm.matrix=df.gene.norm,
gene.norm.pheno=df.gene.norm.pheno,
gene.norm.feature=df.gene.norm.feature,
gene.count.matrix=df.gene.count,
gene.count.pheno=df.gene.count.pheno,
gene.count.feature=df.gene.count.feature,
sj.count.matrix=df.sj.count,
sj.count.pheno=df.sj.count.pheno,
sj.count.feature=df.sj.count.feature,
pca=df.coord,
gtf=gtf
)