| MARSShessian.numerical {MARSS} | R Documentation |
Hessian Matrix via Numerical Approximation
Description
Calculates the Hessian of the log-likelihood function at the MLEs using either the fdHess function in the nlme package or the optim function. This is a utility function in the MARSS-package and is not exported. Use MARSShessian to access.
Usage
MARSShessian.numerical(MLEobj, fun=c("fdHess", "optim"))
Arguments
MLEobj |
An object of class |
fun |
The function to use for computing the Hessian. Options are 'fdHess' or 'optim'. |
Details
Method fdHess uses fdHess from package nlme to numerically estimate the Hessian matrix (the matrix of partial 2nd derivatives) of the negative log-likelihood function with respect to the parameters. Method optim uses optim with hessian=TRUE and list(maxit=0) to ensure that the Hessian is computed at the values in the par element of the MLE object.
Value
The numerically estimated Hessian of the log-likelihood function at the maximum likelihood estimates.
Author(s)
Eli Holmes, NOAA, Seattle, USA.
See Also
MARSSharveyobsFI(), MARSShessian(), MARSSparamCIs()
Examples
dat <- t(harborSeal)
dat <- dat[c(2, 11), ]
MLEobj <- MARSS(dat)
MARSS:::MARSShessian.numerical(MLEobj)