MARSShatyt {MARSS} | R Documentation |
Compute Expected Value of Y, YY, and YX
Description
Computes the expected value of random variables involving \mathbf{Y}
. Users can use tsSmooth()
or print( MLEobj, what="Ey")
to access this output. See print.marssMLE
.
Usage
MARSShatyt(MLEobj, only.kem = TRUE)
Arguments
MLEobj |
A |
only.kem |
If TRUE, return only |
Details
For state space models, MARSShatyt()
computes the expectations involving \mathbf{Y}
. If \mathbf{Y}
is completely observed, this entails simply replacing \mathbf{Y}
with the observed \mathbf{y}
. When \mathbf{Y}
is only partially observed, the expectation involves the conditional expectation of a multivariate normal.
Value
A list with the following components (n is the number of state processes). Following the notation in Holmes (2012), \mathbf{y}(1)
is the observed data (for t=1:T
) while \mathbf{y}(2)
is the unobserved data. \mathbf{y}(1,1:t-1)
is the observed data from time 1 to t-1
.
ytT |
E[Y(t) | Y(1,1:T)=y(1,1:T)] (n x T matrix). |
ytt1 |
E[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x T matrix). |
ytt |
E[Y(t) | Y(1,1:t)=y(1,1:t)] (n x T matrix). |
OtT |
E[Y(t) t(Y(t)) | Y(1,1:T)=y(1,1:T)] (n x n x T array). |
var.ytT |
var[Y(t) | Y(1,1:T)=y(1,1:T)] (n x n x T array). |
var.EytT |
var_X[E_Y[Y(t) | Y(1,1:T)=y(1,1:T), X(t)=x(t)]] (n x n x T array). |
Ott1 |
E[Y(t) t(Y(t)) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array). |
var.ytt1 |
var[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array). |
var.Eytt1 |
var_X[E_Y[Y(t) | Y(1,1:t-1)=y(1,1:t-1), X(t)=x(t)]] (n x n x T array). |
Ott |
E[Y(t) t(Y(t)) | Y(1,1:t)=y(1,1:t)] (n x n x T array). |
yxtT |
E[Y(t) t(X(t)) | Y(1,1:T)=y(1,1:T)] (n x m x T array). |
yxtt1T |
E[Y(t) t(X(t-1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array). |
yxttpT |
E[Y(t) t(X(t+1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array). |
errors |
Any error messages due to ill-conditioned matrices. |
ok |
(TRUE/FALSE) Whether errors were generated. |
Author(s)
Eli Holmes, NOAA, Seattle, USA.
References
Holmes, E. E. (2012) Derivation of the EM algorithm for constrained and unconstrained multivariate autoregressive state-space (MARSS) models. Technical report. arXiv:1302.3919 [stat.ME] Type RShowDoc("EMDerivation",package="MARSS")
to open a copy. See the section on 'Computing the expectations in the update equations' and the subsections on expectations involving Y.
See Also
MARSS()
, marssMODEL
, MARSSkem()
Examples
dat <- t(harborSeal)
dat <- dat[2:3, ]
fit <- MARSS(dat)
EyList <- MARSShatyt(fit)