| calc_Statistics {Luminescence} | R Documentation |
Function to calculate statistic measures
Description
This function calculates a number of descriptive statistics for estimates with a given standard error (SE), most fundamentally using error-weighted approaches.
Usage
calc_Statistics(
data,
weight.calc = "square",
digits = NULL,
n.MCM = NULL,
na.rm = TRUE
)
Arguments
data |
data.frame or RLum.Results object (required):
for data.frame two columns: De ( |
weight.calc |
character:
type of weight calculation. One out of |
digits |
integer (with default):
round numbers to the specified digits.
If digits is set to |
n.MCM |
numeric (with default):
number of samples drawn for Monte Carlo-based statistics.
|
na.rm |
logical (with default):
indicating whether |
Details
The option to use Monte Carlo Methods (n.MCM) allows calculating
all descriptive statistics based on random values. The distribution of these
random values is based on the Normal distribution with De values as
means and De_error values as one standard deviation. Increasing the
number of MCM-samples linearly increases computation time. On a Lenovo X230
machine evaluation of 25 Aliquots with n.MCM = 1000 takes 0.01 s, with
n = 100000, ca. 1.65 s. It might be useful to work with logarithms of these
values. See Dietze et al. (2016, Quaternary Geochronology) and the function
plot_AbanicoPlot for details.
Value
Returns a list with weighted and unweighted statistic measures.
Function version
0.1.7
How to cite
Dietze, M., 2024. calc_Statistics(): Function to calculate statistic measures. Function version 0.1.7. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., 2024. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.9.24. https://CRAN.R-project.org/package=Luminescence
Author(s)
Michael Dietze, GFZ Potsdam (Germany) , RLum Developer Team
Examples
## load example data
data(ExampleData.DeValues, envir = environment())
## show a rough plot of the data to illustrate the non-normal distribution
plot_KDE(ExampleData.DeValues$BT998)
## calculate statistics and show output
str(calc_Statistics(ExampleData.DeValues$BT998))
## Not run:
## now the same for 10000 normal distributed random numbers with equal errors
x <- as.data.frame(cbind(rnorm(n = 10^5, mean = 0, sd = 1),
rep(0.001, 10^5)))
## note the congruent results for weighted and unweighted measures
str(calc_Statistics(x))
## End(Not run)