agglomerativeHC {LearnClust}R Documentation

To execute agglomerative hierarchical clusterization algorithm by distance and approach.

Description

To execute complete agglomerative hierarchical clusterization algorithm choosing distance and approach type.

Usage

agglomerativeHC(data, distance, approach)

Arguments

data

could be a numeric vector, a matrix or a numeric data frame. It will be transformed into matrix and list to be used.

distance

is a string. It chooses the distance to use.

approach

is a string. It chooses the approach to use.

Details

This function is the main part of the agglomerative hierarchical clusterization method. It executes the theoretical algorithm step by step.

1 - The function transforms data in useful object to be used.

2 - It creates the clusters.

3 - It calculates a matrix distances with the clusters created applying distance and approach given.

4 - It chooses the distance value and gets the clusters.

5 - It groups the clusters in a new one and updates clusters list.

6 - It repeats these steps until an unique cluster exists.

Value

R object with a dendrogram, the grouped clusters and the list with every cluster.

Author(s)

Roberto Alcántara roberto.alcantara@edu.uah.es

Juan José Cuadrado jjcg@uah.es

Universidad de Alcalá de Henares

Examples


a <- c(1,2,1,3,1,4,1,5,1,6)

matrixA <- matrix(a,ncol=2)

dataFrameA <- data.frame(matrixA)

agglomerativeHC(a,'EUC','MAX')

agglomerativeHC(matrixA,'MAN','AVG')

agglomerativeHC(dataFrameA,'CAN','MIN')


[Package LearnClust version 1.1 Index]