rwmetrop {LearnBayes} | R Documentation |
Random walk Metropolis algorithm of a posterior distribution
Description
Simulates iterates of a random walk Metropolis chain for an arbitrary real-valued posterior density defined by the user
Usage
rwmetrop(logpost,proposal,start,m,...)
Arguments
logpost |
function defining the log posterior density |
proposal |
a list containing var, an estimated variance-covariance matrix, and scale, the Metropolis scale factor |
start |
vector containing the starting value of the parameter |
m |
the number of iterations of the chain |
... |
data that is used in the function logpost |
Value
par |
a matrix of simulated values where each row corresponds to a value of the vector parameter |
accept |
the acceptance rate of the algorithm |
Author(s)
Jim Albert
Examples
data=c(6,2,3,10)
varcov=diag(c(1,1))
proposal=list(var=varcov,scale=2)
start=array(c(1,1),c(1,2))
m=1000
s=rwmetrop(logctablepost,proposal,start,m,data)
[Package LearnBayes version 2.15.1 Index]