groupeddatapost {LearnBayes} | R Documentation |
Log posterior of normal parameters when data is in grouped form
Description
Computes the log posterior density of (M,log S) for normal sampling where the data is observed in grouped form
Usage
groupeddatapost(theta,data)
Arguments
theta |
vector of parameter values M and log S |
data |
list with components int.lo, a vector of left endpoints, int.hi, a vector of right endpoints, and f, a vector of bin frequencies |
Value
value of the log posterior
Author(s)
Jim Albert
Examples
int.lo=c(-Inf,10,15,20,25)
int.hi=c(10,15,20,25,Inf)
f=c(2,5,8,4,2)
data=list(int.lo=int.lo,int.hi=int.hi,f=f)
theta=c(20,1)
groupeddatapost(theta,data)
[Package LearnBayes version 2.15.1 Index]