gibbs {LearnBayes} | R Documentation |
Metropolis within Gibbs sampling algorithm of a posterior distribution
Description
Implements a Metropolis-within-Gibbs sampling algorithm for an arbitrary real-valued posterior density defined by the user
Usage
gibbs(logpost,start,m,scale,...)
Arguments
logpost |
function defining the log posterior density |
start |
array with a single row that gives the starting value of the parameter vector |
m |
the number of iterations of the chain |
scale |
vector of scale parameters for the random walk Metropolis steps |
... |
data that is used in the function logpost |
Value
par |
a matrix of simulated values where each row corresponds to a value of the vector parameter |
accept |
vector of acceptance rates of the Metropolis steps of the algorithm |
Author(s)
Jim Albert
Examples
data=c(6,2,3,10)
start=array(c(1,1),c(1,2))
m=1000
scale=c(2,2)
s=gibbs(logctablepost,start,m,scale,data)
[Package LearnBayes version 2.15.1 Index]