discrete.bayes.2 {LearnBayes} | R Documentation |
Posterior distribution of two parameters with discrete priors
Description
Computes the posterior distribution for an arbitrary two parameter distribution for a discrete prior distribution.
Usage
discrete.bayes.2(df,prior,y=NULL,...)
Arguments
df |
name of the function defining the sampling density of two parameters |
prior |
matrix defining the prior density; the row names and column names of the matrix define respectively the values of parameter 1 and values of parameter 2 and the entries of the matrix give the prior probabilities |
y |
y is a matrix of data values, where each row corresponds to a single observation |
... |
any further fixed parameter values used in the sampling density function |
Value
prob |
matrix of posterior probabilities |
pred |
scalar with prior predictive probability |
Author(s)
Jim Albert
Examples
p1 = seq(0.1, 0.9, length = 9)
p2 = p1
prior = matrix(1/81, 9, 9)
dimnames(prior)[[1]] = p1
dimnames(prior)[[2]] = p2
discrete.bayes.2(twoproplike,prior)
[Package LearnBayes version 2.15.1 Index]