betabinexch0 {LearnBayes} | R Documentation |
Log posterior of mean and precision for Binomial/beta exchangeable model
Description
Computes the log posterior density of mean and precision for a Binomial/beta exchangeable model
Usage
betabinexch0(theta,data)
Arguments
theta |
vector of parameter values of eta and K |
data |
a matrix with columns y (counts) and n (sample sizes) |
Value
value of the log posterior
Author(s)
Jim Albert
Examples
n=c(20,20,20,20,20)
y=c(1,4,3,6,10)
data=cbind(y,n)
theta=c(.1,10)
betabinexch0(theta,data)
[Package LearnBayes version 2.15.1 Index]