betabinexch {LearnBayes} | R Documentation |
Log posterior of logit mean and log precision for Binomial/beta exchangeable model
Description
Computes the log posterior density of logit mean and log precision for a Binomial/beta exchangeable model
Usage
betabinexch(theta,data)
Arguments
theta |
vector of parameter values of logit eta and log K |
data |
a matrix with columns y (counts) and n (sample sizes) |
Value
value of the log posterior
Author(s)
Jim Albert
Examples
n=c(20,20,20,20,20)
y=c(1,4,3,6,10)
data=cbind(y,n)
theta=c(-1,0)
betabinexch(theta,data)
[Package LearnBayes version 2.15.1 Index]