bayesresiduals {LearnBayes} | R Documentation |
Computation of posterior residual outlying probabilities for a linear regression model
Description
Computes the posterior probabilities that Bayesian residuals exceed a cutoff value for a linear regression model with a noninformative prior
Usage
bayesresiduals(lmfit,post,k)
Arguments
lmfit |
output of the regression function lm |
post |
list with components beta, matrix of simulated draws of regression parameter, and sigma, vector of simulated draws of sampling standard deviation |
k |
cut-off value that defines an outlier |
Value
vector of posterior outlying probabilities
Author(s)
Jim Albert
Examples
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
lmfit=lm(temp~X)
m=1000
post=blinreg(temp,X,m)
k=2
bayesresiduals(lmfit,post,k)
[Package LearnBayes version 2.15.1 Index]