bayes.model.selection {LearnBayes} | R Documentation |
Bayesian regression model selection using G priors
Description
Using Zellner's G priors, computes the log marginal density for all possible regression models
Usage
bayes.model.selection(y, X, c, constant=TRUE)
Arguments
y |
vector of response values |
X |
matrix of covariates |
c |
parameter of the G prior |
constant |
logical variable indicating if a constant term is in the matrix X |
Value
mod.prob |
data frame specifying the model, the value of the log marginal density and the value of the posterior model probability |
converge |
logical vector indicating if the laplace algorithm converged for each model |
Author(s)
Jim Albert
Examples
data(birdextinct)
logtime=log(birdextinct$time)
X=cbind(1,birdextinct$nesting,birdextinct$size,birdextinct$status)
bayes.model.selection(logtime,X,100)
[Package LearnBayes version 2.15.1 Index]