| dist.Multivariate.t.Precision {LaplacesDemon} | R Documentation |
Multivariate t Distribution: Precision Parameterization
Description
These functions provide the density and random number generation for the multivariate t distribution, otherwise called the multivariate Student distribution. These functions use the precision parameterization.
Usage
dmvtp(x, mu, Omega, nu=Inf, log=FALSE)
rmvtp(n=1, mu, Omega, nu=Inf)
Arguments
x |
This is either a vector of length |
n |
This is the number of random draws. |
mu |
This is a numeric vector representing the location parameter,
|
Omega |
This is a |
nu |
This is the degrees of freedom |
log |
Logical. If |
Details
Application: Continuous Multivariate
Density:
p(\theta) = \frac{\Gamma((\nu+k)/2)}{\Gamma(\nu/2)\nu^{k/2}\pi^{k/2}} |\Omega|^{1/2} (1 + \frac{1}{\nu} (\theta-\mu)^T \Omega (\theta-\mu))^{-(\nu+k)/2}Inventor: Unknown (to me, anyway)
Notation 1:
\theta \sim \mathrm{t}_k(\mu, \Omega^{-1}, \nu)Notation 2:
p(\theta) = \mathrm{t}_k(\theta | \mu, \Omega^{-1}, \nu)Parameter 1: location vector
\muParameter 2: positive-definite
k \times kprecision matrix\OmegaParameter 3: degrees of freedom
\nu > 0Mean:
E(\theta) = \mu, for\nu > 1, otherwise undefinedVariance:
var(\theta) = \frac{\nu}{\nu - 2} \Omega^{-1}, for\nu > 2Mode:
mode(\theta) = \mu
The multivariate t distribution, also called the multivariate Student or multivariate Student t distribution, is a multidimensional extension of the one-dimensional or univariate Student t distribution. A random vector is considered to be multivariate t-distributed if every linear combination of its components has a univariate Student t-distribution.
It is usually parameterized with mean and a covariance matrix, or in Bayesian inference, with mean and a precision matrix, where the precision matrix is the matrix inverse of the covariance matrix. These functions provide the precision parameterization for convenience and familiarity. It is easier to calculate a multivariate t density with the precision parameterization, because a matrix inversion can be avoided.
This distribution has a mean parameter vector \mu of length
k, and a k \times k precision matrix
\Omega, which must be positive-definite. When degrees of
freedom \nu=1, this is the multivariate Cauchy distribution.
Value
dmvtp gives the density and
rmvtp generates random deviates.
Author(s)
Statisticat, LLC. software@bayesian-inference.com
See Also
dwishart,
dmvc,
dmvcp,
dmvt,
dst,
dstp, and
dt.
Examples
library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Omega <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
nu <- 4
f <- dmvtp(cbind(x,y,z), mu, Omega, nu)
X <- rmvtp(1000, c(0,1,2), diag(3), 5)
joint.density.plot(X[,1], X[,2], color=TRUE)