dist.Inverse.Matrix.Gamma {LaplacesDemon} | R Documentation |
Inverse Matrix Gamma Distribution
Description
This function provides the density for the inverse matrix gamma distribution.
Usage
dinvmatrixgamma(X, alpha, beta, Psi, log=FALSE)
Arguments
X |
This is a |
alpha |
This is a scalar shape parameter (the degrees of freedom),
|
beta |
This is a scalar, positive-only scale parameter,
|
Psi |
This is a |
log |
Logical. If |
Details
Application: Continuous Multivariate Matrix
Density:
Inventors: Unknown
Notation 1:
Notation 2:
Parameter 1: shape
Parameter 2: scale
Parameter 3: positive-definite
scale matrix
Mean:
Variance:
Mode:
The inverse matrix gamma (IMG), also called the inverse matrix-variate
gamma, distribution is a generalization of the inverse gamma
distribution to positive-definite matrices. It is a more general and
flexible version of the inverse Wishart distribution
(dinvwishart
), and is a conjugate prior of the covariance
matrix of a multivariate normal distribution (dmvn
) and
matrix normal distribution (dmatrixnorm
).
The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.
The inverse matrix gamma distribution is identical to the inverse
Wishart distribution when and
.
Value
dinvmatrixgamma
gives the density.
Author(s)
Statisticat, LLC. software@bayesian-inference.com
See Also
dinvgamma
dmatrixnorm
,
dmvn
, and
dinvwishart
Examples
library(LaplacesDemon)
k <- 10
dinvmatrixgamma(X=diag(k), alpha=(k+1)/2, beta=2, Psi=diag(k), log=TRUE)
dinvwishart(Sigma=diag(k), nu=k+1, S=diag(k), log=TRUE)