dist.Inverse.Gaussian {LaplacesDemon} | R Documentation |
Inverse Gaussian Distribution
Description
This is the density function and random generation from the inverse gaussian distribution.
Usage
dinvgaussian(x, mu, lambda, log=FALSE)
rinvgaussian(n, mu, lambda)
Arguments
n |
This is the number of draws from the distribution. |
x |
This is the scalar location to evaluate density. |
mu |
This is the mean parameter, |
lambda |
This is the inverse-variance parameter,
|
log |
Logical. If |
Details
Application: Continuous Univariate
Density:
p(\theta) = \frac{\lambda}{(2 \pi \theta^3)^{1/2}} \exp(-\frac{\lambda (\theta - \mu)^2}{2 \mu^2 \theta}), \theta > 0
Inventor: Schrodinger (1915)
Notation 1:
\theta \sim \mathcal{N}^{-1}(\mu, \lambda)
Notation 2:
p(\theta) = \mathcal{N}^{-1}(\theta | \mu, \lambda)
Parameter 1: shape
\mu > 0
Parameter 2: scale
\lambda > 0
Mean:
E(\theta) = \mu
Variance:
var(\theta) = \frac{\mu^3}{\lambda}
Mode:
mode(\theta) = \mu((1 + \frac{9 \mu^2}{4 \lambda^2})^{1/2} - \frac{3 \mu}{2 \lambda})
The inverse-Gaussian distribution, also called the Wald distribution, is
used when modeling dependent variables that are positive and
continuous. When
\lambda \rightarrow \infty
(or variance
to zero), the inverse-Gaussian distribution becomes similar to a normal
(Gaussian) distribution. The name, inverse-Gaussian, is misleading,
because it is not the inverse of a Gaussian distribution, which is
obvious from the fact that \theta
must be positive.
Value
dinvgaussian
gives the density and
rinvgaussian
generates random deviates.
References
Schrodinger E. (1915). "Zur Theorie der Fall-und Steigversuche an Teilchenn mit Brownscher Bewegung". Physikalische Zeitschrift, 16, p. 289–295.
See Also
Examples
library(LaplacesDemon)
x <- dinvgaussian(2, 1, 1)
x <- rinvgaussian(10, 1, 1)
#Plot Probability Functions
x <- seq(from=1, to=20, by=0.1)
plot(x, dinvgaussian(x,1,0.5), ylim=c(0,1), type="l", main="Probability Function",
ylab="density", col="red")
lines(x, dinvgaussian(x,1,1), type="l", col="green")
lines(x, dinvgaussian(x,1,5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==1, ", ", sigma==0.5),
paste(mu==1, ", ", sigma==1), paste(mu==1, ", ", sigma==5)),
lty=c(1,1,1), col=c("red","green","blue"))