dist.Generalized.Poisson {LaplacesDemon} | R Documentation |
Generalized Poisson Distribution
Description
The density function is provided for the univariate, discrete,
generalized Poisson distribution with location parameter
\lambda
and scale parameter \omega
.
Usage
dgpois(x, lambda=0, omega=0, log=FALSE)
Arguments
x |
This is a vector of quantiles. |
lambda |
This is the parameter |
omega |
This is the parameter |
log |
Logical. If |
Details
Application: Discrete Univariate
Density:
p(\theta) = (1 - \omega) \lambda \frac{[(1 - \omega) \lambda + \omega \theta]^{\theta - 1}}{\theta!} \exp{-[(1 - \omega) \lambda + \omega \theta]}
Inventor: Consul (1989) and Ntzoufras et al. (2005)
Notation 1:
\theta \sim \mathrm{GP}(\lambda,\omega)
Notation 2:
p(\theta) = \mathrm{GP}(\theta | \lambda, \omega)
Parameter 1: location parameter
\lambda
Parameter 2: scale parameter
\omega \in [0,1)
Mean:
E(\theta) = \lambda
Variance:
var(\theta) = \lambda(1 - \omega)^{-2}
The generalized Poisson distribution (Consul, 1989) is also called the Lagrangian Poisson distribution. The simple Poisson distribution is a special case of the generalized Poisson distribution. The generalized Poisson distribution is used in generalized Poisson regression as an extension of Poisson regression that accounts for overdispersion.
The dgpois
function is parameterized according to Ntzoufras et
al. (2005), which is easier to interpret and estimates better with MCMC.
Valid values for omega are in the interval [0,1) for positive counts.
For \omega = 0
, the generalized Poisson reduces to a
simple Poisson with mean \lambda
. Note that it is possible
for \omega < 0
, but this implies underdispersion in
count data, which is uncommon. The dgpois
function returns
warnings or errors, so \omega
should be non-negative here.
The dispersion index (DI) is a variance-to-mean ratio, and is DI =
(1 - \omega)^{-2}
. A simple Poisson has DI=1.
When DI is far from one, the assumption that the variance equals the
mean of a simple Poisson is violated.
Value
dgpois
gives the density.
References
Consul, P. (1989). '"Generalized Poisson Distribution: Properties and Applications". Marcel Decker: New York, NY.
Ntzoufras, I., Katsis, A., and Karlis, D. (2005). "Bayesian Assessment of the Distribution of Insurance Claim Counts using Reversible Jump MCMC", North American Actuarial Journal, 9, p. 90–108.
See Also
Examples
library(LaplacesDemon)
y <- rpois(100, 5)
lambda <- rpois(100, 5)
x <- dgpois(y, lambda, 0.5)
#Plot Probability Functions
x <- seq(from=0, to=20, by=1)
plot(x, dgpois(x,1,0.5), ylim=c(0,1), type="l", main="Probability Function",
ylab="density", col="red")
lines(x, dlaplace(x,1,0.6), type="l", col="green")
lines(x, dlaplace(x,1,0.7), type="l", col="blue")
legend(2, 0.9, expression(paste(lambda==1, ", ", omega==0.5),
paste(lambda==1, ", ", omega==0.6), paste(lambda==1, ", ", omega==0.7)),
lty=c(1,1,1), col=c("red","green","blue"))