LaplacesDemon-package {LaplacesDemon}R Documentation

Complete Environment for Bayesian Inference

Description

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Details

The DESCRIPTION file:

Package: LaplacesDemon
Version: 16.1.6
Title: Complete Environment for Bayesian Inference
Authors@R: c(person("Byron", "Hall", role = "aut"), person("Martina", "Hall", role = "aut"), person(family="Statisticat, LLC", role = "aut"), person(given="Eric", family="Brown", role = "ctb"), person(given="Richard", family="Hermanson", role = "ctb"), person(given="Emmanuel", family="Charpentier", role = "ctb"), person(given="Daniel", family="Heck", role = "ctb"), person(given="Stephane", family="Laurent", role = "ctb"), person(given="Quentin F.", family="Gronau", role = "ctb"), person(given="Henrik", family="Singmann", email="singmann+LaplacesDemon@gmail.com", role="cre"))
Depends: R (>= 3.0.0)
Imports: parallel, grDevices, graphics, stats, utils
Suggests: KernSmooth
ByteCompile: TRUE
Description: Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).
License: MIT + file LICENSE
URL: https://github.com/LaplacesDemonR/LaplacesDemon
BugReports: https://github.com/LaplacesDemonR/LaplacesDemon/issues
Author: Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Maintainer: Henrik Singmann <singmann+LaplacesDemon@gmail.com>

Index of help topics:

ABB                     Approximate Bayesian Bootstrap
AcceptanceRate          Acceptance Rate
BMK.Diagnostic          BMK Convergence Diagnostic
BayesFactor             Bayes Factor
BayesTheorem            Bayes' Theorem
BayesianBootstrap       The Bayesian Bootstrap
BigData                 Big Data
Blocks                  Blocks
CSF                     Cumulative Sample Function
CenterScale             Centering and Scaling
Combine                 Combine Demonoid Objects
Consort                 Consort with Laplace's Demon
Cov2Prec                Precision
ESS                     Effective Sample Size due to Autocorrelation
GIV                     Generate Initial Values
GaussHermiteQuadRule    Math Utility Functions
Gelfand.Diagnostic      Gelfand's Convergence Diagnostic
Gelman.Diagnostic       Gelman and Rubin's MCMC Convergence Diagnostic
Geweke.Diagnostic       Geweke's Convergence Diagnostic
Hangartner.Diagnostic   Hangartner's Convergence Diagnostic
Heidelberger.Diagnostic
                        Heidelberger and Welch's MCMC Convergence
                        Diagnostic
IAT                     Integrated Autocorrelation Time
Importance              Variable Importance
IterativeQuadrature     Iterative Quadrature
Juxtapose               Juxtapose MCMC Algorithm Inefficiency
KLD                     Kullback-Leibler Divergence (KLD)
KS.Diagnostic           Kolmogorov-Smirnov Convergence Diagnostic
LML                     Logarithm of the Marginal Likelihood
LPL.interval            Lowest Posterior Loss Interval
LaplaceApproximation    Laplace Approximation
LaplacesDemon           Laplace's Demon
LaplacesDemon-package   Complete Environment for Bayesian Inference
LaplacesDemon.RAM       LaplacesDemon RAM Estimate
Levene.Test             Levene's Test
LossMatrix              Loss Matrix
MCSE                    Monte Carlo Standard Error
MISS                    Multiple Imputation Sequential Sampling
MinnesotaPrior          Minnesota Prior
Mode                    The Mode(s) of a Vector
Model.Spec.Time         Model Specification Time
PMC                     Population Monte Carlo
PMC.RAM                 PMC RAM Estimate
PosteriorChecks         Posterior Checks
Raftery.Diagnostic      Raftery and Lewis's diagnostic
RejectionSampling       Rejection Sampling
SIR                     Sampling Importance Resampling
SensitivityAnalysis     Sensitivity Analysis
Stick                   Truncated Stick-Breaking
Thin                    Thin
Validate                Holdout Validation
VariationalBayes        Variational Bayes
WAIC                    Widely Applicable Information Criterion
as.covar                Proposal Covariance
as.indicator.matrix     Matrix Utility Functions
as.initial.values       Initial Values
as.parm.names           Parameter Names
as.ppc                  As Posterior Predictive Check
burnin                  Burn-in
caterpillar.plot        Caterpillar Plot
cloglog                 The log-log and complementary log-log functions
cond.plot               Conditional Plots
dStick                  Truncated Stick-Breaking Prior Distribution
dalaplace               Asymmetric Laplace Distribution: Univariate
dallaplace              Asymmetric Log-Laplace Distribution
daml                    Asymmetric Multivariate Laplace Distribution
dbern                   Bernoulli Distribution
dcat                    Categorical Distribution
dcrmrf                  Continuous Relaxation of a Markov Random Field
                        Distribution
ddirichlet              Dirichlet Distribution
de.Finetti.Game         de Finetti's Game
deburn                  De-Burn
delicit                 Prior Elicitation
demonchoice             Demon Choice Data Set
demonfx                 Demon FX Data Set
demonsessions           Demon Sessions Data Set
demonsnacks             Demon Snacks Data Set
demontexas              Demon Space-Time Data Set
dgpd                    Generalized Pareto Distribution
dgpois                  Generalized Poisson Distribution
dhalfcauchy             Half-Cauchy Distribution
dhalfnorm               Half-Normal Distribution
dhalft                  Half-t Distribution
dhs                     Horseshoe Distribution
dhuangwand              Huang-Wand Distribution
dhyperg                 Hyperprior-g Prior and Zellner's g-Prior
dinvbeta                Inverse Beta Distribution
dinvchisq               (Scaled) Inverse Chi-Squared Distribution
dinvgamma               Inverse Gamma Distribution
dinvgaussian            Inverse Gaussian Distribution
dinvmatrixgamma         Inverse Matrix Gamma Distribution
dinvwishart             Inverse Wishart Distribution
dinvwishartc            Inverse Wishart Distribution: Cholesky
                        Parameterization
dlaplace                Laplace Distribution: Univariate Symmetric
dlaplacem               Mixture of Laplace Distributions
dlaplacep               Laplace Distribution: Precision
                        Parameterization
dlasso                  LASSO Distribution
dllaplace               Log-Laplace Distribution: Univariate Symmetric
dlnormp                 Log-Normal Distribution: Precision
                        Parameterization
dmatrixgamma            Matrix Gamma Distribution
dmatrixnorm             Matrix Normal Distribution
dmvc                    Multivariate Cauchy Distribution
dmvcc                   Multivariate Cauchy Distribution: Cholesky
                        Parameterization
dmvcp                   Multivariate Cauchy Distribution: Precision
                        Parameterization
dmvcpc                  Multivariate Cauchy Distribution:
                        Precision-Cholesky Parameterization
dmvl                    Multivariate Laplace Distribution
dmvlc                   Multivariate Laplace Distribution: Cholesky
                        Parameterization
dmvn                    Multivariate Normal Distribution
dmvnc                   Multivariate Normal Distribution: Cholesky
                        Parameterization
dmvnp                   Multivariate Normal Distribution: Precision
                        Parameterization
dmvnpc                  Multivariate Normal Distribution:
                        Precision-Cholesky Parameterization
dmvpe                   Multivariate Power Exponential Distribution
dmvpec                  Multivariate Power Exponential Distribution:
                        Cholesky Parameterization
dmvpolya                Multivariate Polya Distribution
dmvt                    Multivariate t Distribution
dmvtc                   Multivariate t Distribution: Cholesky
                        Parameterization
dmvtp                   Multivariate t Distribution: Precision
                        Parameterization
dmvtpc                  Multivariate t Distribution: Precision-Cholesky
                        Parameterization
dnorminvwishart         Normal-Inverse-Wishart Distribution
dnormlaplace            Normal-Laplace Distribution: Univariate
                        Asymmetric
dnormm                  Mixture of Normal Distributions
dnormp                  Normal Distribution: Precision Parameterization
dnormv                  Normal Distribution: Variance Parameterization
dnormwishart            Normal-Wishart Distribution
dpareto                 Pareto Distribution
dpe                     Power Exponential Distribution: Univariate
                        Symmetric
dsdlaplace              Skew Discrete Laplace Distribution: Univariate
dsiw                    Scaled Inverse Wishart Distribution
dslaplace               Skew-Laplace Distribution: Univariate
dst                     Student t Distribution: Univariate
dstp                    Student t Distribution: Precision
                        Parameterization
dtrunc                  Truncated Distributions
dwishart                Wishart Distribution
dwishartc               Wishart Distribution: Cholesky Parameterization
dyangberger             Yang-Berger Distribution
interval                Constrain to Interval
is.appeased             Appeased
is.bayesfactor          Logical Check of Classes
is.bayesian             Logical Check of a Bayesian Model
is.constant             Logical Check of a Constant
is.constrained          Logical Check of Constraints
is.data                 Logical Check of Data
is.model                Logical Check of a Model
is.proper               Logical Check of Propriety
is.stationary           Logical Check of Stationarity
joint.density.plot      Joint Density Plot
joint.pr.plot           Joint Probability Region Plot
logit                   The logit and inverse-logit functions
p.interval              Probability Interval
plot.bmk                Plot Hellinger Distances
plot.demonoid           Plot samples from the output of Laplace's Demon
plot.demonoid.ppc       Plots of Posterior Predictive Checks
plot.importance         Plot Variable Importance
plot.iterquad           Plot the output of 'IterativeQuadrature'
plot.iterquad.ppc       Plots of Posterior Predictive Checks
plot.juxtapose          Plot MCMC Juxtaposition
plot.laplace            Plot the output of 'LaplaceApproximation'
plot.laplace.ppc        Plots of Posterior Predictive Checks
plot.miss               Plot samples from the output of MISS
plot.pmc                Plot samples from the output of PMC
plot.pmc.ppc            Plots of Posterior Predictive Checks
plot.vb                 Plot the output of 'VariationalBayes'
plot.vb.ppc             Plots of Posterior Predictive Checks
plotMatrix              Plot a Numerical Matrix
plotSamples             Plot Samples
predict.demonoid        Posterior Predictive Checks
predict.iterquad        Posterior Predictive Checks
predict.laplace         Posterior Predictive Checks
predict.pmc             Posterior Predictive Checks
predict.vb              Posterior Predictive Checks
print.demonoid          Print an object of class 'demonoid' to the
                        screen.
print.heidelberger      Print an object of class 'heidelberger' to the
                        screen.
print.iterquad          Print an object of class 'iterquad' to the
                        screen.
print.laplace           Print an object of class 'laplace' to the
                        screen.
print.miss              Print an object of class 'miss' to the screen.
print.pmc               Print an object of class 'pmc' to the screen.
print.raftery           Print an object of class 'raftery' to the
                        screen.
print.vb                Print an object of class 'vb' to the screen.
server_Listening        Server Listening
summary.demonoid.ppc    Posterior Predictive Check Summary
summary.iterquad.ppc    Posterior Predictive Check Summary
summary.laplace.ppc     Posterior Predictive Check Summary
summary.miss            MISS Summary
summary.pmc.ppc         Posterior Predictive Check Summary
summary.vb.ppc          Posterior Predictive Check Summary

The goal of LaplacesDemon, often referred to as LD, is to provide a complete and self-contained Bayesian environment within R. For example, this package includes dozens of MCMC algorithms, Laplace Approximation, iterative quadrature, variational Bayes, parallelization, big data, PMC, over 100 examples in the “Examples” vignette, dozens of additional probability distributions, numerous MCMC diagnostics, Bayes factors, posterior predictive checks, a variety of plots, elicitation, parameter and variable importance, Bayesian forms of test statistics (such as Durbin-Watson, Jarque-Bera, etc.), validation, and numerous additional utility functions, such as functions for multimodality, matrices, or timing your model specification. Other vignettes include an introduction to Bayesian inference, as well as a tutorial.

No further development of this package is currently being done as the original maintainer has stopped working on the package. Contributions to this package are welcome at https://github.com/LaplacesDemonR/LaplacesDemon.

The main function in this package is the LaplacesDemon function, and the best place to start is probably with the LaplacesDemon Tutorial vignette.

Author(s)

NA

Maintainer: NA


[Package LaplacesDemon version 16.1.6 Index]