LaplacesDemon-package {LaplacesDemon} | R Documentation |
Complete Environment for Bayesian Inference
Description
Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).
Details
The DESCRIPTION file:
Package: | LaplacesDemon |
Version: | 16.1.6 |
Title: | Complete Environment for Bayesian Inference |
Authors@R: | c(person("Byron", "Hall", role = "aut"), person("Martina", "Hall", role = "aut"), person(family="Statisticat, LLC", role = "aut"), person(given="Eric", family="Brown", role = "ctb"), person(given="Richard", family="Hermanson", role = "ctb"), person(given="Emmanuel", family="Charpentier", role = "ctb"), person(given="Daniel", family="Heck", role = "ctb"), person(given="Stephane", family="Laurent", role = "ctb"), person(given="Quentin F.", family="Gronau", role = "ctb"), person(given="Henrik", family="Singmann", email="singmann+LaplacesDemon@gmail.com", role="cre")) |
Depends: | R (>= 3.0.0) |
Imports: | parallel, grDevices, graphics, stats, utils |
Suggests: | KernSmooth |
ByteCompile: | TRUE |
Description: | Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview). |
License: | MIT + file LICENSE |
URL: | https://github.com/LaplacesDemonR/LaplacesDemon |
BugReports: | https://github.com/LaplacesDemonR/LaplacesDemon/issues |
Author: | Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre] |
Maintainer: | Henrik Singmann <singmann+LaplacesDemon@gmail.com> |
Index of help topics:
ABB Approximate Bayesian Bootstrap AcceptanceRate Acceptance Rate BMK.Diagnostic BMK Convergence Diagnostic BayesFactor Bayes Factor BayesTheorem Bayes' Theorem BayesianBootstrap The Bayesian Bootstrap BigData Big Data Blocks Blocks CSF Cumulative Sample Function CenterScale Centering and Scaling Combine Combine Demonoid Objects Consort Consort with Laplace's Demon Cov2Prec Precision ESS Effective Sample Size due to Autocorrelation GIV Generate Initial Values GaussHermiteQuadRule Math Utility Functions Gelfand.Diagnostic Gelfand's Convergence Diagnostic Gelman.Diagnostic Gelman and Rubin's MCMC Convergence Diagnostic Geweke.Diagnostic Geweke's Convergence Diagnostic Hangartner.Diagnostic Hangartner's Convergence Diagnostic Heidelberger.Diagnostic Heidelberger and Welch's MCMC Convergence Diagnostic IAT Integrated Autocorrelation Time Importance Variable Importance IterativeQuadrature Iterative Quadrature Juxtapose Juxtapose MCMC Algorithm Inefficiency KLD Kullback-Leibler Divergence (KLD) KS.Diagnostic Kolmogorov-Smirnov Convergence Diagnostic LML Logarithm of the Marginal Likelihood LPL.interval Lowest Posterior Loss Interval LaplaceApproximation Laplace Approximation LaplacesDemon Laplace's Demon LaplacesDemon-package Complete Environment for Bayesian Inference LaplacesDemon.RAM LaplacesDemon RAM Estimate Levene.Test Levene's Test LossMatrix Loss Matrix MCSE Monte Carlo Standard Error MISS Multiple Imputation Sequential Sampling MinnesotaPrior Minnesota Prior Mode The Mode(s) of a Vector Model.Spec.Time Model Specification Time PMC Population Monte Carlo PMC.RAM PMC RAM Estimate PosteriorChecks Posterior Checks Raftery.Diagnostic Raftery and Lewis's diagnostic RejectionSampling Rejection Sampling SIR Sampling Importance Resampling SensitivityAnalysis Sensitivity Analysis Stick Truncated Stick-Breaking Thin Thin Validate Holdout Validation VariationalBayes Variational Bayes WAIC Widely Applicable Information Criterion as.covar Proposal Covariance as.indicator.matrix Matrix Utility Functions as.initial.values Initial Values as.parm.names Parameter Names as.ppc As Posterior Predictive Check burnin Burn-in caterpillar.plot Caterpillar Plot cloglog The log-log and complementary log-log functions cond.plot Conditional Plots dStick Truncated Stick-Breaking Prior Distribution dalaplace Asymmetric Laplace Distribution: Univariate dallaplace Asymmetric Log-Laplace Distribution daml Asymmetric Multivariate Laplace Distribution dbern Bernoulli Distribution dcat Categorical Distribution dcrmrf Continuous Relaxation of a Markov Random Field Distribution ddirichlet Dirichlet Distribution de.Finetti.Game de Finetti's Game deburn De-Burn delicit Prior Elicitation demonchoice Demon Choice Data Set demonfx Demon FX Data Set demonsessions Demon Sessions Data Set demonsnacks Demon Snacks Data Set demontexas Demon Space-Time Data Set dgpd Generalized Pareto Distribution dgpois Generalized Poisson Distribution dhalfcauchy Half-Cauchy Distribution dhalfnorm Half-Normal Distribution dhalft Half-t Distribution dhs Horseshoe Distribution dhuangwand Huang-Wand Distribution dhyperg Hyperprior-g Prior and Zellner's g-Prior dinvbeta Inverse Beta Distribution dinvchisq (Scaled) Inverse Chi-Squared Distribution dinvgamma Inverse Gamma Distribution dinvgaussian Inverse Gaussian Distribution dinvmatrixgamma Inverse Matrix Gamma Distribution dinvwishart Inverse Wishart Distribution dinvwishartc Inverse Wishart Distribution: Cholesky Parameterization dlaplace Laplace Distribution: Univariate Symmetric dlaplacem Mixture of Laplace Distributions dlaplacep Laplace Distribution: Precision Parameterization dlasso LASSO Distribution dllaplace Log-Laplace Distribution: Univariate Symmetric dlnormp Log-Normal Distribution: Precision Parameterization dmatrixgamma Matrix Gamma Distribution dmatrixnorm Matrix Normal Distribution dmvc Multivariate Cauchy Distribution dmvcc Multivariate Cauchy Distribution: Cholesky Parameterization dmvcp Multivariate Cauchy Distribution: Precision Parameterization dmvcpc Multivariate Cauchy Distribution: Precision-Cholesky Parameterization dmvl Multivariate Laplace Distribution dmvlc Multivariate Laplace Distribution: Cholesky Parameterization dmvn Multivariate Normal Distribution dmvnc Multivariate Normal Distribution: Cholesky Parameterization dmvnp Multivariate Normal Distribution: Precision Parameterization dmvnpc Multivariate Normal Distribution: Precision-Cholesky Parameterization dmvpe Multivariate Power Exponential Distribution dmvpec Multivariate Power Exponential Distribution: Cholesky Parameterization dmvpolya Multivariate Polya Distribution dmvt Multivariate t Distribution dmvtc Multivariate t Distribution: Cholesky Parameterization dmvtp Multivariate t Distribution: Precision Parameterization dmvtpc Multivariate t Distribution: Precision-Cholesky Parameterization dnorminvwishart Normal-Inverse-Wishart Distribution dnormlaplace Normal-Laplace Distribution: Univariate Asymmetric dnormm Mixture of Normal Distributions dnormp Normal Distribution: Precision Parameterization dnormv Normal Distribution: Variance Parameterization dnormwishart Normal-Wishart Distribution dpareto Pareto Distribution dpe Power Exponential Distribution: Univariate Symmetric dsdlaplace Skew Discrete Laplace Distribution: Univariate dsiw Scaled Inverse Wishart Distribution dslaplace Skew-Laplace Distribution: Univariate dst Student t Distribution: Univariate dstp Student t Distribution: Precision Parameterization dtrunc Truncated Distributions dwishart Wishart Distribution dwishartc Wishart Distribution: Cholesky Parameterization dyangberger Yang-Berger Distribution interval Constrain to Interval is.appeased Appeased is.bayesfactor Logical Check of Classes is.bayesian Logical Check of a Bayesian Model is.constant Logical Check of a Constant is.constrained Logical Check of Constraints is.data Logical Check of Data is.model Logical Check of a Model is.proper Logical Check of Propriety is.stationary Logical Check of Stationarity joint.density.plot Joint Density Plot joint.pr.plot Joint Probability Region Plot logit The logit and inverse-logit functions p.interval Probability Interval plot.bmk Plot Hellinger Distances plot.demonoid Plot samples from the output of Laplace's Demon plot.demonoid.ppc Plots of Posterior Predictive Checks plot.importance Plot Variable Importance plot.iterquad Plot the output of 'IterativeQuadrature' plot.iterquad.ppc Plots of Posterior Predictive Checks plot.juxtapose Plot MCMC Juxtaposition plot.laplace Plot the output of 'LaplaceApproximation' plot.laplace.ppc Plots of Posterior Predictive Checks plot.miss Plot samples from the output of MISS plot.pmc Plot samples from the output of PMC plot.pmc.ppc Plots of Posterior Predictive Checks plot.vb Plot the output of 'VariationalBayes' plot.vb.ppc Plots of Posterior Predictive Checks plotMatrix Plot a Numerical Matrix plotSamples Plot Samples predict.demonoid Posterior Predictive Checks predict.iterquad Posterior Predictive Checks predict.laplace Posterior Predictive Checks predict.pmc Posterior Predictive Checks predict.vb Posterior Predictive Checks print.demonoid Print an object of class 'demonoid' to the screen. print.heidelberger Print an object of class 'heidelberger' to the screen. print.iterquad Print an object of class 'iterquad' to the screen. print.laplace Print an object of class 'laplace' to the screen. print.miss Print an object of class 'miss' to the screen. print.pmc Print an object of class 'pmc' to the screen. print.raftery Print an object of class 'raftery' to the screen. print.vb Print an object of class 'vb' to the screen. server_Listening Server Listening summary.demonoid.ppc Posterior Predictive Check Summary summary.iterquad.ppc Posterior Predictive Check Summary summary.laplace.ppc Posterior Predictive Check Summary summary.miss MISS Summary summary.pmc.ppc Posterior Predictive Check Summary summary.vb.ppc Posterior Predictive Check Summary
The goal of LaplacesDemon, often referred to as LD, is to provide a complete and self-contained Bayesian environment within R. For example, this package includes dozens of MCMC algorithms, Laplace Approximation, iterative quadrature, variational Bayes, parallelization, big data, PMC, over 100 examples in the “Examples” vignette, dozens of additional probability distributions, numerous MCMC diagnostics, Bayes factors, posterior predictive checks, a variety of plots, elicitation, parameter and variable importance, Bayesian forms of test statistics (such as Durbin-Watson, Jarque-Bera, etc.), validation, and numerous additional utility functions, such as functions for multimodality, matrices, or timing your model specification. Other vignettes include an introduction to Bayesian inference, as well as a tutorial.
No further development of this package is currently being done as the original maintainer has stopped working on the package. Contributions to this package are welcome at https://github.com/LaplacesDemonR/LaplacesDemon.
The main function in this package is the LaplacesDemon
function, and the best place to start is probably with the
LaplacesDemon Tutorial vignette.
Author(s)
NA
Maintainer: NA