get_real_depths {LadderFuelsR} | R Documentation |
Effective fuel layers depth
Description
This function recalculates fuel layers depth after considering distances greater than the actual height bin step.
Usage
get_real_depths (effective_fbh, step=1, min_height=1.5, verbose=TRUE)
Arguments
effective_fbh |
tree metrics with the recalculated base height of fuel layers after considering distances greater than any number of height bin steps (output of [get_real_fbh()] function).An object of the class text. |
step |
Numeric value for the actual height bin step (in meters). |
min_height |
Numeric value for the actual minimum base height (in meters). |
verbose |
Logical, indicating whether to display informational messages (default is TRUE). |
Details
# List of tree metrics:
treeID: tree ID with strings and numeric values
treeID1: tree ID with only numeric values
dist: Distance between consecutive fuel layers (m)
Hdist - Height of the distance between consecutive fuel layers (m)
Hcbh - Base height of each fuel separated by a distance greater than the certain number of steps
dptf - Depth of fuel layers (m) after considering distances greater than the actual height bin step
Hdptf - Height of the depth of fuel layers (m) after considering distances greater than the actual height bin step
max_height - Maximum height of the tree profile
Value
A data frame giving new fuel layers depth after considering distances greater than the actual height bin step.
Author(s)
Olga Viedma, Carlos Silva, JM Moreno and A.T. Hudak
See Also
Examples
library(magrittr)
library(tidyr)
library(dplyr)
# Before running this example, make sure to run get_real_fbh().
if (interactive()) {
effective_fbh <- get_real_fbh()
LadderFuelsR::effective_fbh$treeID <- factor(LadderFuelsR::effective_fbh$treeID)
trees_name1 <- as.character(effective_fbh$treeID)
trees_name2 <- factor(unique(trees_name1))
depth_metrics_corr_list <- list()
for (i in levels(trees_name2)){
# Filter data for each tree
tree3 <- effective_fbh |> dplyr::filter(treeID == i)
# Get real depths for each tree
depth_metrics_corr <- get_real_depths(tree3, step=1, min_height=1.5,verbose=TRUE)
depth_metrics_corr_list[[i]] <- depth_metrics_corr
}
# Combine depth values for all trees
effective_depth <- dplyr::bind_rows(depth_metrics_corr_list)
# Reorder columns
original_column_names <- colnames(effective_depth)
# Specify prefixes
desired_order <- c("treeID", "Hcbh", "dptf", "dist", "Hdist", "Hdptf", "max_height")
# Identify unique prefixes
prefixes <- unique(sub("^([a-zA-Z]+).*", "\\1", original_column_names))
# Initialize vector to store new order
new_order <- c()
# Loop over desired order of prefixes
for (prefix in desired_order) {
# Find column names matching the current prefix
matching_columns <- grep(paste0("^", prefix), original_column_names, value = TRUE)
# Append to the new order
new_order <- c(new_order, matching_columns)
}
effective_depth <- effective_depth[, new_order]
}