LPCM-package {LPCM}R Documentation

Local principal curve methods

Description

Fitting multivariate data patterns with local principal curves, including tools for data compression (projection) and measuring goodness-of-fit; with some additional functions for mean shift clustering.

This package implements the techniques introduced in Einbeck, Tutz & Evers (2005), Einbeck, Evers & Powell (2010), Einbeck (2011), Almeijeiras-Alonso and Einbeck (2023).

The main functions to be called by the user are

The package contains also specialized functions for projection and spline fitting (lpc.project, lpc.spline), functions for bandwidth selection (lpc.self.coverage, ms.self.coverage), goodness of fit assessment (Rc, coverage), as well as some methods for generic functions such as print and plot.

Details

Package: LPCM
Type: Package
License: GPL (>=2)
LazyLoad: yes

Acknowledgements

Contributions (in form of pieces of code, or useful suggestions for improvements) by Jo Dwyer, Mohammad Zayed, and Ben Oakley are gratefully acknowledged.

Author(s)

Jochen Einbeck and Ludger Evers

Maintainer: Jochen Einbeck <jochen.einbeck@durham.ac.uk>

References

Einbeck, J., Tutz, G., & Evers, L. (2005): Local principal curves, Statistics and Computing 15, 301-313.

Einbeck, J., Evers, L., & Powell, B. (2010): Data compression and regression through local principal curves and surfaces, International Journal of Neural Systems 20, 177-192.

Einbeck, J. (2011): Bandwidth selection for nonparametric unsupervised learning techniques – a unified approach via self-coverage. Journal of Pattern Recognition Research 6, 175-192.

Almeijeiras-Alonso, J. and Einbeck, J. (2023). A fresh look at mean-shift based modal clustering, Advances in Data Analysis and Classification, doi:10.1007/s11634-023-00575-1.

See Also

pcurve, princurve


[Package LPCM version 0.47-4 Index]