model.frame.lmm {LMMstar} | R Documentation |
Extracting the Model Frame from a Linear Mixed Model
Description
Variables needed to fit the Linear Mixed Model.
Usage
## S3 method for class 'lmm'
model.frame(
formula,
newdata = NULL,
type = NULL,
add.index = FALSE,
na.rm = TRUE,
...
)
Arguments
formula |
[lmm] linear mixed model object |
newdata |
[data.frame] dataset relative to which the model frame should be constructed. |
type |
[character] By default returns the processed dataset used to fit the Linear Mixed Model ( |
add.index |
[logical] Should columns indexing the row number from the original dataset, time variable, cluster variable, strata variable be added to the output? |
na.rm |
[logical] Should rows containing missing values for the variables used in the linear mixed model be removed?
Not relevant when argument type is |
... |
Not used. For compatibility with the generic method. |
Details
Column "XXindexXX"
refers to the row of the original dataset (i.e. passed to argument data
when calling lmm
).
When adding rows relative to missing repetitions, since there is no row in the original dataset, a negative sign is used.
Examples
data("armd.wide", package = "nlmeU")
e.lmH <- lmm(visual52 ~ lesion, structure = IND(~treat.f), data = armd.wide)
model.frame(e.lmH)
model.frame(e.lmH, add.index = TRUE)
model.frame(e.lmH, type = "unique")
data("gastricbypassL", package = "LMMstar")
dfL.NNA <- na.omit(gastricbypassL)
e.lmm <- lmm(glucagonAUC ~ time, repetition = ~visit|id, data = dfL.NNA, df = FALSE)
model.frame(e.lmm, type = "unique")
model.frame(e.lmm, type = c("unique","correlation"))
model.frame(e.lmm, type = "add.NA", add.index = TRUE)