add_samples {JointAI} | R Documentation |
Continue sampling from an object of class JointAI
Description
This function continues the sampling from the MCMC chains of an existing
object of class 'JointAI'.
Usage
add_samples(object, n.iter, add = TRUE, thin = NULL,
monitor_params = NULL, progress.bar = "text", mess = TRUE)
Arguments
object |
object inheriting from class 'JointAI' |
n.iter |
the number of additional iterations of the MCMC chain |
add |
logical; should the new MCMC samples be added to the existing
samples ( |
thin |
thinning interval (see |
monitor_params |
named list or vector specifying which parameters should
be monitored. For details, see
|
progress.bar |
character string specifying the type of
progress bar. Possible values are "text" (default), "gui",
and "none" (see |
mess |
logical; should messages be given? Default is
|
See Also
The vignette
Parameter Selection
contains some examples on how to specify the argument monitor_params
.
Examples
# Example 1:
# Run an initial JointAI model:
mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100)
# Continue sampling:
mod_add <- add_samples(mod, n.iter = 200, add = TRUE)
# Example 2:
# Continue sampling, but additionally sample imputed values.
# Note: Setting different parameters to monitor than in the original model
# requires add = FALSE.
imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE),
add = FALSE)