GR_crit {JointAI} | R Documentation |
Gelman-Rubin criterion for convergence
Description
Calculates the Gelman-Rubin criterion for convergence
(uses gelman.diag
from package coda).
Usage
GR_crit(object, confidence = 0.95, transform = FALSE, autoburnin = TRUE,
multivariate = TRUE, subset = NULL, exclude_chains = NULL,
start = NULL, end = NULL, thin = NULL, warn = TRUE, mess = TRUE,
...)
Arguments
object |
object inheriting from class 'JointAI' |
confidence |
the coverage probability of the confidence interval for the potential scale reduction factor |
transform |
a logical flag indicating whether variables in
|
autoburnin |
a logical flag indicating whether only the second half
of the series should be used in the computation. If set to TRUE
(default) and |
multivariate |
a logical flag indicating whether the multivariate potential scale reduction factor should be calculated for multivariate chains |
subset |
subset of parameters/variables/nodes (columns in the MCMC
sample). Follows the same principle as the argument
|
exclude_chains |
optional vector of the index numbers of chains that should be excluded |
start |
the first iteration of interest
(see |
end |
the last iteration of interest
(see |
thin |
thinning interval (integer; see |
warn |
logical; should warnings be given? Default is
|
mess |
logical; should messages be given? Default is
|
... |
currently not used |
References
Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511.
Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
See Also
The vignette
Parameter Selection
contains some examples how to specify the argument subset
.
Examples
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
GR_crit(mod1)