| GR_crit {JointAI} | R Documentation | 
Gelman-Rubin criterion for convergence
Description
Calculates the Gelman-Rubin criterion for convergence
(uses gelman.diag from package coda).
Usage
GR_crit(object, confidence = 0.95, transform = FALSE, autoburnin = TRUE,
  multivariate = TRUE, subset = NULL, exclude_chains = NULL,
  start = NULL, end = NULL, thin = NULL, warn = TRUE, mess = TRUE,
  ...)
Arguments
object | 
 object inheriting from class 'JointAI'  | 
confidence | 
 the coverage probability of the confidence interval for the potential scale reduction factor  | 
transform | 
 a logical flag indicating whether variables in
  | 
autoburnin | 
 a logical flag indicating whether only the second half
of the series should be used in the computation.  If set to TRUE
(default) and   | 
multivariate | 
 a logical flag indicating whether the multivariate potential scale reduction factor should be calculated for multivariate chains  | 
subset | 
 subset of parameters/variables/nodes (columns in the MCMC
sample). Follows the same principle as the argument
  | 
exclude_chains | 
 optional vector of the index numbers of chains that should be excluded  | 
start | 
 the first iteration of interest
(see   | 
end | 
 the last iteration of interest
(see   | 
thin | 
 thinning interval (integer; see   | 
warn | 
 logical; should warnings be given? Default is
  | 
mess | 
 logical; should messages be given? Default is
  | 
... | 
 currently not used  | 
References
Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511.
Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
See Also
The vignette
Parameter Selection
contains some examples how to specify the argument subset.
Examples
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
GR_crit(mod1)