predict.psvcsignal {JOPS} | R Documentation |
Predict function for psVCSignal
Description
Prediction function which returns both linear
predictor and inverse link predictions for an arbitrary matrix of
signals with their vector of companion indexing covariates (using
psVCSignal
with class psvcsignal
).
Usage
## S3 method for class 'psvcsignal'
predict(object, ..., X_pred, t_pred, type = "mu")
Arguments
object |
an object using |
... |
other parameters. |
X_pred |
a matrix of |
t_pred |
a |
type |
the mean value |
Value
pred |
the estimated mean (inverse link function) (default)
or the linear predictor prediction with |
Author(s)
Paul Eilers and Brian Marx
References
Eilers, P. H. C. and Marx, B. D. (2003). Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and Intellegent Laboratory Systems, 66, 159–174.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
Examples
library(fds)
data(nirc)
iindex <- nirc$x
X <- nirc$y
sel <- 50:650 # 1200 <= x & x<= 2400
X <- X[sel, ]
iindex <- iindex[sel]
dX <- diff(X)
diindex <- iindex[-1]
y <- as.vector(labc[1, 1:40]) # percent fat
t_var <- as.vector(labc[4, 1:40]) # percent flour
oout <- 23
dX <- t(dX[, -oout])
y <- y[-oout]
t_var = t_var[-oout]
Pars = rbind(c(min(diindex), max(diindex), 25, 3, 1e-7, 2),
c(min(t_var), max(t_var), 20, 3, 0.0001, 2))
fit1 <- psVCSignal(y, dX, diindex, t_var, Pars = Pars,
family = "gaussian", link = "identity", int = TRUE)
predict(fit1, X_pred = dX[1:5,], t_pred = t_var[1:5])