plot.psvcsignal {JOPS} | R Documentation |
Plotting function for psVCSignal
Description
Plotting function for varying-coefficent signal
regression P-spline smooth coefficients (using psVCSignal
with class psvcsignal
).
Although se surface bands can be comuputed they are intentially left out as they are not
interpretable, and there is generally little data to steer
such a high-dimensional parameterization.
Usage
## S3 method for class 'psvcsignal'
plot(x, ..., xlab = " ", ylab = " ", Resol = 100)
Arguments
x |
the P-spline object, usually from |
... |
other parameters. |
xlab |
label for the x-axis, e.g. "my x" (quotes required). |
ylab |
label for the y-axis, e.g. "my y" (quotes required). |
Resol |
resolution for plotting, default |
Value
Plot |
a two panel plot, one of the 2D P-spline signal coefficient surface and another that displays several slices of the smooth coefficient vectors at fixed levels of the varying index. |
Author(s)
Paul Eilers and Brian Marx
References
Eilers, P. H. C. and Marx, B. D. (2003). Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and Intellegent Laboratory Systems, 66, 159–174.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
Examples
library(fds)
data(nirc)
iindex <- nirc$x
X <- nirc$y
sel <- 50:650 # 1200 <= x & x<= 2400
X <- X[sel, ]
iindex <- iindex[sel]
dX <- diff(X)
diindex <- iindex[-1]
y <- as.vector(labc[1, 1:40]) # percent fat
t_var <- as.vector(labc[4, 1:40]) # percent flour
oout <- 23
dX <- t(dX[, -oout])
y <- y[-oout]
t_var = t_var[-oout]
Pars = rbind(c(min(diindex), max(diindex), 25, 3, 1e-7, 2),
c(min(t_var), max(t_var), 20, 3, 0.0001, 2))
fit1 <- psVCSignal(y, dX, diindex, t_var, Pars = Pars,
family = "gaussian", link = "identity", int = TRUE)
plot(fit1, xlab = "Coefficient Index", ylab = "VC: % Flour")
names(fit1)