plot.pspfit {JOPS} | R Documentation |
Plotting function for psNormal
, psPoisson
, psBinomial
Description
Plotting function for P-spline smooth with normal, Poisson, or binomial responses
(class pspfit
), with or without standard error bands.
Usage
## S3 method for class 'pspfit'
plot(x, ..., se = 2, xlab = "", ylab = "", col = "black", pch = 1)
Arguments
x |
the P-spline object, usually from psNormal, psPoisson, psBinomial. |
... |
other parameters. |
se |
a scalar, e.g. |
xlab |
label for the x-axis. |
ylab |
label for the y-axis. |
col |
color for points. |
pch |
point character. |
Value
Plot |
a plot of the mean (inverse link) smoothed normal, Poisson, or binomial responses, with or without se bands. |
Author(s)
Paul Eilers and Brian Marx
References
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
Eilers, P.H.C., Marx, B.D., and Durban, M. (2015). Twenty years of P-splines, SORT, 39(2): 149-186.
Examples
library(JOPS)
#Extract data
library(MASS)
# Get the data
data(mcycle)
x = mcycle$times
y = mcycle$accel
fit1 = psNormal(x, y, nseg = 20, bdeg = 3, pord = 2, lambda = .8)
plot(fit1, se = 2, xlab = "time (ms)", ylab = "accel")
library(JOPS)
library(boot)
# Extract the data
Count = hist(boot::coal$date, breaks=c(1851:1963), plot = FALSE)$counts
Year = c(1851:1962)
xl = min(Year)
xr = max(Year)
# Poisson smoothing
nseg = 20
bdeg = 3
fit1=psPoisson(Year, Count, xl, xr, nseg, bdeg, pord = 2,
lambda = 1)
names(fit1)
plot(fit1, xlab = "Year", ylab = "Count", se = 2)
library(JOPS)
#Extract data
library(rpart)
Kyphosis = kyphosis$Kyphosis
Age =kyphosis$Age
y = 1 * (Kyphosis == "present") # make y 0/1
# Binomial smoothing
fit1 = psBinomial(Age, y, xl = min(Age), xr = max(Age), nseg = 20,
bdeg = 3, pord = 2, lambda = 1)
names(fit1)
plot(fit1, xlab = "Age", ylab = '0/1', se = 2)
[Package JOPS version 0.1.19 Index]