plot.ps2dsignal {JOPS} | R Documentation |
Plotting function for ps2DSignal
Description
Plotting function for 2D P-spline signal regression
coefficients (using ps2DSignal
with class ps2dsignal
). Although
standard error surface bands
can be comuputed they are intentially left out as they are not
interpretable, and there is generally little data to steer
such a high-dimensional parameterization.
Usage
## S3 method for class 'ps2dsignal'
plot(x, ..., xlab = " ", ylab = " ", Resol = 200)
Arguments
x |
the P-spline object, usually from |
... |
other parameters. |
xlab |
label for the x-axis, e.g. "my x" (quotes required). |
ylab |
label for the y-axis, e.g. "my y" (quotes required). |
Resol |
Resolution of bgrid (default |
Value
Plot |
a plot of the 2D P-spline signal coefficent surface. |
Author(s)
Paul Eilers and Brian Marx
References
Marx, B.D. and Eilers, P.H.C. (2005). Multidimensional penalized signal regression, Technometrics, 47: 13-22.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
Examples
library(fields)
library(JOPS)
# Get the data
x0 <- Sugar$X
x0 <- x0 - apply(x0, 1, mean) # center Signal
y <- as.vector(Sugar$y[, 3]) # Response is Ash
# Inputs for two-dimensional signal regression
nseg <- c(7, 37)
pord <- c(3, 3)
min_ <- c(230, 275)
max_ <- c(340, 560)
M1_index <- rev(c(340, 325, 305, 290, 255, 240, 230))
M2_index <- seq(from = 275, to = 560, by = .5)
p1 <- length(M1_index)
p2 <- length(M2_index)
# Fit optimal model based on LOOCV
opt_lam <- c(8858.6679, 428.1332) # Found via svcm
Pars_opt <- rbind(
c(min_[1], max_[1], nseg[1], 3, opt_lam[1], pord[1]),
c(min_[2], max_[2], nseg[2], 3, opt_lam[2], pord[2]))
fit <- ps2DSignal(y, x0, p1, p2, "unfolded", M1_index, M2_index,
Pars_opt, int = FALSE, ridge_adj = 1e-4 )
# Plotting coefficient image
plot(fit)