ranef {JM} | R Documentation |
Random Effects Estimates for Joint Models
Description
Extracts the random effects estimates from a fitted joint model.
Usage
## S3 method for class 'jointModel'
ranef(object, type = c("mean", "mode"), postVar = FALSE, ...)
Arguments
object |
an object inheriting from class |
type |
what type of empirical Bayes estimates to compute, the mean of the posterior distribution or the mode of the posterior distribution. |
postVar |
logical; if |
... |
additional arguments; currently none is used. |
Value
a numeric matrix with rows denoting the individuals and columns the random effects (e.g., intercepts, slopes, etc.).
If postVar = TRUE
, the numeric matrix has an extra attribute “postVar".
Author(s)
Dimitris Rizopoulos d.rizopoulos@erasmusmc.nl
References
Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-Event Data: with Applications in R. Boca Raton: Chapman and Hall/CRC.
See Also
coef.jointModel
, fixef.jointModel
Examples
## Not run:
# linear mixed model fit
fitLME <- lme(log(serBilir) ~ drug * year, random = ~ 1 | id, data = pbc2)
# survival regression fit
fitSURV <- survreg(Surv(years, status2) ~ drug, data = pbc2.id, x = TRUE)
# joint model fit, under the (default) Weibull model
fitJOINT <- jointModel(fitLME, fitSURV, timeVar = "year")
ranef(fitJOINT)
## End(Not run)