plot {JM} | R Documentation |
Plot Diagnostics for Joint Models
Description
Produces a variety of plots for fitted joint models.
Usage
## S3 method for class 'jointModel'
plot(x, which = 1:4, caption = c("Residuals vs Fitted",
"Normal Q-Q", "Marginal Survival", "Marginal Cumulative Hazard",
"Marginal log Cumulative Hazard", "Baseline Hazard",
"Cumulative Baseline Hazard", "Subject-specific Survival",
"Subject-specific Cumulative Hazard",
"Subject-specific log Cumulative Hazard"), survTimes = NULL,
main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
..., ids = NULL, add.smooth = getOption("add.smooth"),
add.qqline = TRUE, add.KM = FALSE, cex.caption = 1, return = FALSE)
Arguments
x |
an object inheriting from class |
which |
which types of plots to produce, specify a subset of the numbers 1:10. |
caption |
captions to appear above the plots defined by argument |
survTimes |
a vector of survival times for which the survival, cumulative hazard or
log cumulative hazard will be computed. Default is |
main |
a character string specifying the title in the plot. |
ask |
logical; if |
... |
other parameters to be passed through to plotting functions. |
ids |
a numeric vector specifying which subjects, the subject-specific plots will include; default is all subjects. |
add.smooth |
logical; if |
add.qqline |
logical; if |
add.KM |
logical; if |
cex.caption |
magnification of captions. |
return |
logical; if |
Note
The plots of the baseline hazard and the cumulative baseline hazard are only produced when the joint model has
been fitted using method = "Cox-PH-GH"
.
Author(s)
Dimitris Rizopoulos d.rizopoulos@erasmusmc.nl
References
Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-Event Data: with Applications in R. Boca Raton: Chapman and Hall/CRC.
Rizopoulos, D. (2010) JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1–33. doi:10.18637/jss.v035.i09
See Also
Examples
## Not run:
# linear mixed model fit
fitLME <- lme(log(serBilir) ~ drug * year, random = ~ 1 | id, data = pbc2)
# survival regression fit
fitSURV <- survreg(Surv(years, status2) ~ drug, data = pbc2.id, x = TRUE)
# joint model fit, under the (default) Weibull model
fitJOINT <- jointModel(fitLME, fitSURV, timeVar = "year")
plot(fitJOINT, 3, add.KM = TRUE, col = "red", lwd = 2)
par(mfrow = c(2, 2))
plot(fitJOINT)
## End(Not run)