simdata {ImpShrinkage} | R Documentation |
Simulation data
Description
This function generates a toy example. The error term, \varepsilon
,
and the design matrix, X
, are simulated from standard normal
distributions, \mathcal{N}(0,1)
, using the rnorm
function. Given the true parameter vector, \beta
, the response vector,
y
, is calculated as
y = X \beta + \varepsilon.
Usage
simdata(n, p, beta, seed = NULL)
Arguments
n |
Number of observations. |
p |
Number of variables. |
beta |
Regression parameter. |
seed |
(Optional) The random seed for reproducibility. Default is |
Value
A list containing the following components:
- X
a matrix of dimensions
n x p
.- y
a numeric vector of length
n
.
References
Saleh, A. K. Md. Ehsanes. (2006). Theory of Preliminary Test and Stein‐Type Estimation With Applications, Wiley.
Examples
simulated_data <- simdata(n = 100, p = 5, beta = c(2, 1, 3, 0, 5))
X <- simulated_data$X
y <- simulated_data$y
X
y
[Package ImpShrinkage version 1.0.0 Index]