resReg {ImpShrinkage}R Documentation

The restricted estimator

Description

This function calculates the restricted estimator using

\hat{\beta}^{R} = \hat{\beta}^{U} - (X^{\top}X)^{-1}H^{\top} (H(X^{\top}X)^{-1}H^{\top})^{-1}(H\hat{\beta}^{U}-h)

where

Usage

resReg(X, y, H, h)

Arguments

X

Matrix with input observations, of dimension n x p; each row is an observation vector.

y

Vector with response observations of size n.

H

A given q x p matrix.

h

A given q x 1 vector.

Details

#' The corresponding estimator of \sigma^2 is

s^2 = \frac{1}{n-p}(y-X\hat{\beta}^{R})^{\top}(y - X\hat{\beta}^{R}).

Value

An object of class restricted is a list containing at least the following components:

coef

A named vector of coefficients.

residuals

The residuals, that is, the response values minus fitted values.

s2

The estimated variance.

fitted.values

The fitted values.

References

Saleh, A. K. Md. Ehsanes. (2006). Theory of Preliminary Test and Stein‐Type Estimation With Applications, Wiley.

Kaciranlar, S., Akdeniz, S. S. F., Styan, G. P. & Werner, H. J. (1999). A new biased estimators in linear regression and detailed analysis of the widely-analysed dataset on portland cement. Sankhya, Series B, 61(3), 443-459.

Kibria, B. M. Golam (2005). Applications of Some Improved Estimators in Linear Regression, Journal of Modern Applied Statistical Methods, 5(2), 367- 380.

Examples

n_obs <- 100
p_vars <- 5
beta <- c(2, 1, 3, 0, 5)
simulated_data <- simdata(n = n_obs, p = p_vars, beta)
X <- simulated_data$X
y <- simulated_data$y
p <- ncol(X)
# H beta = h
H <- matrix(c(1, 1, -1, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, 0), nrow = 3, ncol = p, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)

# H beta != h
H <- matrix(c(1, 1, -1, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, 0), nrow = 3, ncol = p, byrow = TRUE)
h <- rep(1, nrow(H))
resReg(X, y, H, h)


data(cement)
X <- as.matrix(cbind(1, cement[, 1:4]))
y <- cement$y
# Based on Kaciranlar et al. (1999)
H <- matrix(c(0, 1, -1, 1, 0), nrow = 1, ncol = 5, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)
# Based on Kibria (2005)
H <- matrix(c(0, 1, -1, 1, 0, 0, 0, 1, -1, -1, 0, 1, -1, 0, -1), nrow = 3, ncol = 5, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)

[Package ImpShrinkage version 1.0.0 Index]