| resReg {ImpShrinkage} | R Documentation |
The restricted estimator
Description
This function calculates the restricted estimator using
\hat{\beta}^{R} = \hat{\beta}^{U} - (X^{\top}X)^{-1}H^{\top}
(H(X^{\top}X)^{-1}H^{\top})^{-1}(H\hat{\beta}^{U}-h)
where
-
\hat{\beta}^{U}is the unrestricted estimator; SeeunrReg. -
H\beta = hrepresents a subspace of the parameter space induced by the non-sample information. Here,His a knownq \times pmatrix, andhis a knownq-vector.
Usage
resReg(X, y, H, h)
Arguments
X |
Matrix with input observations, of dimension |
y |
Vector with response observations of size |
H |
A given |
h |
A given |
Details
#' The corresponding estimator of \sigma^2 is
s^2 = \frac{1}{n-p}(y-X\hat{\beta}^{R})^{\top}(y - X\hat{\beta}^{R}).
Value
An object of class restricted is a list containing at least the following components:
coefA named vector of coefficients.
residualsThe residuals, that is, the response values minus fitted values.
s2The estimated variance.
fitted.valuesThe fitted values.
References
Saleh, A. K. Md. Ehsanes. (2006). Theory of Preliminary Test and Stein‐Type Estimation With Applications, Wiley.
Kaciranlar, S., Akdeniz, S. S. F., Styan, G. P. & Werner, H. J. (1999). A new biased estimators in linear regression and detailed analysis of the widely-analysed dataset on portland cement. Sankhya, Series B, 61(3), 443-459.
Kibria, B. M. Golam (2005). Applications of Some Improved Estimators in Linear Regression, Journal of Modern Applied Statistical Methods, 5(2), 367- 380.
Examples
n_obs <- 100
p_vars <- 5
beta <- c(2, 1, 3, 0, 5)
simulated_data <- simdata(n = n_obs, p = p_vars, beta)
X <- simulated_data$X
y <- simulated_data$y
p <- ncol(X)
# H beta = h
H <- matrix(c(1, 1, -1, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, 0), nrow = 3, ncol = p, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)
# H beta != h
H <- matrix(c(1, 1, -1, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, 0), nrow = 3, ncol = p, byrow = TRUE)
h <- rep(1, nrow(H))
resReg(X, y, H, h)
data(cement)
X <- as.matrix(cbind(1, cement[, 1:4]))
y <- cement$y
# Based on Kaciranlar et al. (1999)
H <- matrix(c(0, 1, -1, 1, 0), nrow = 1, ncol = 5, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)
# Based on Kibria (2005)
H <- matrix(c(0, 1, -1, 1, 0, 0, 0, 1, -1, -1, 0, 1, -1, 0, -1), nrow = 3, ncol = 5, byrow = TRUE)
h <- rep(0, nrow(H))
resReg(X, y, H, h)