curvIPEC {IPEC}R Documentation

RMS Curvature Calculation Function

Description

Calculates the root mean square curvatures (intrinsic and parameter-effects curvatures) of a nonlinear regression model.

Usage

curvIPEC(expr, theta, x, y, tol = 1e-16, alpha = 0.05, method = "Richardson", 
         method.args = list(eps = 1e-04, d = 0.11, 
         zero.tol = sqrt(.Machine$double.eps/7e-07), 
         r = 6, v = 2, show.details = FALSE), side = NULL)

Arguments

expr

A given parametric model

theta

A vector of parameters of the model

x

A vector or matrix of observations of independent variable(s)

y

A vector of observations of response variable

tol

The tolerance for detecting linear dependencies in the columns of a matrix in the QR decomposition. See the input argument of tol of the qr function in package base

alpha

Parameter controlling the significance level for testing the significance of a curvature

method

It is the same as the input argument of method of the hessian function in package numDeriv

method.args

It is the same as the input argument of method.args of the hessian function in package numDeriv

side

It is the same as the input argument of side of the jacobian function in package numDeriv

Details

This function was built based on the hessian and jacobian functions in package numDeriv, with reference to the rms.curv function in package MASS. However, it is more general without being limited by the deriv3 function in package stats and nls class like the rms.curv function in package MASS. It mainly relies on package numDeriv. The users only need provide the defined model, the fitted parameter vector, and the observations of independent and response variables, they will obtain the curvatures. The input argument theta can be obtained using the fitIPEC function in the current package, and it also can be obtained using the other nonlinear regression functions.

Value

rms.ic

The root mean square intrinsic curvature

rms.pec

The root mean square parameter-effects curvature

critical.c

The critical curvature value

Note

The calculation precision of curvature mainly depends on the setting of method.args. The two important default values in the list of method.args are d = 0.11, and r = 6.

This function cannot be used to calculate the maximum intrinsic and parameter-effects curvatures.

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Peter M. Ridland p.ridland@unimelb.edu.au, David A. Ratkowsky d.ratkowsky@utas.edu.au, Yang Li yangli@fau.edu.

References

Bates, D.M and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York. doi:10.1002/9780470316757

Gebremariam, B. (2014) Is nonlinear regression throwing you a curve? New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014. http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf

Ratkowsky, D.A. (1983) Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York.

Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.

Ratkowsky, D.A. & Reddy, G.V.P. (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309. doi:10.1093/aesa/saw098

See Also

derivIPEC, hessian in package numDeriv, jacobian in package numDeriv, rms.curv in package MASS

Examples

#### Example 1 ##################################################################################
# The velocity of the reaction (counts/min^2) under different substrate concentrations 
#   in parts per million (ppm) (Pages 255 and 269 of Bates and Watts 1988)

x1 <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56, 1.10, 1.10)
y1 <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)

# Define the Michaelis-Menten model
MM <- function(theta, x){
    theta[1]*x / ( theta[2] + x )    
}

par1 <- c(212.68490865, 0.06412421)
# To calculate curvatures
res2 <- curvIPEC(MM, theta=par1, x=x1, y=y1, alpha=0.05, method="Richardson",
            method.args=list(eps=1e-4, d=0.11, zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2)) 
res2
##################################################################################################


#### Example 2 ###################################################################################
# Development data of female pupae of cotton bollworm (Wu et al. 2009)
# References:
#   Ratkowsky, D.A. and Reddy, G.V.P. (2017) Empirical model with excellent statistical 
#       properties for describing temperature-dependent developmental rates of insects  
#       and mites. Ann. Entomol. Soc. Am. 110, 302-309.
#   Wu, K., Gong, P. and Ruan, Y. (2009) Estimating developmental rates of 
#       Helicoverpa armigera (Lepidoptera: Noctuidae) pupae at constant and
#       alternating temperature by nonlinear models. Acta Entomol. Sin. 52, 640-650.

# 'x2' is the vector of temperature (in degrees Celsius)
# 'D2' is the vector of developmental duration (in d)
# 'y2' is the vector of the square root of developmental rate (in 1/d)

x2 <- seq(15, 37, by=1)
D2 <- c( 41.24,37.16,32.47,26.22,22.71,19.01,16.79,15.63,14.27,12.48,
         11.3,10.56,9.69,9.14,8.24,8.02,7.43,7.27,7.35,7.49,7.63,7.9,10.03 )
y2 <- 1/D2
y2 <- sqrt( y2 )

# Define the square root function of the Lobry-Rosso-Flandrois (LRF) model
sqrt.LRF <- function(P, x){
  ropt <- P[1]
  Topt <- P[2]
  Tmin <- P[3]
  Tmax <- P[4]
  fun0 <- function(z){
    z[z < Tmin] <- Tmin
    z[z > Tmax] <- Tmax
    return(z)
  }
  x <- fun0(x)
  if (Tmin >= Tmax | ropt <= 0 | Topt <= Tmin | Topt >= Tmax) 
    temp <- Inf
  if (Tmax > Tmin & ropt > 0 & Topt > Tmin & Topt < Tmax){
    temp <- sqrt( ropt*(x-Tmax)*(x-Tmin)^2/((Topt-Tmin)*((Topt-Tmin
      )*(x-Topt)-(Topt-Tmax)*(Topt+Tmin-2*x))) )  
  }
  return( temp )
}

myfun <- sqrt.LRF
par2  <- c(0.1382926, 33.4575663, 5.5841244, 38.8282021)

# To calculate curvatures
resu2 <- curvIPEC( myfun, theta=par2, x=x2, y=y2, alpha=0.05, method="Richardson", 
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
resu2
##################################################################################################


#### Example 3 ###################################################################################
# Height growth data of four species of bamboo (Gramineae: Bambusoideae)
# Reference(s):
# Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S. and  
#     Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. 
#     Ecol. Model. 349, 1-10.

data(shoots)
# Choose a species
# 1: Phyllostachys iridescens; 2: Phyllostachys mannii; 
# 3: Pleioblastus maculatus; 4: Sinobambusa tootsik. 
# 'x3' is the vector of the investigation times (in d) from a specific starting time of growth
# 'y3' is the vector of the aboveground height values (in cm) of bamboo shoots at 'x3' 

ind <- 4
x3  <- shoots$x[shoots$Code == ind]
y3  <- shoots$y[shoots$Code == ind] 

# Define the beta sigmoid model (bsm)
bsm <- function(P, x){
  P  <- cbind(P)
  if(length(P) !=4 ) {stop("The number of parameters should be 4!")}
  ropt <- P[1]
  topt <- P[2]
  tmin <- P[3]
  tmax <- P[4]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   
  ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*(
     (x-tmin)/(topt-tmin))^((topt-tmin)/(tmax-topt))   
}

# Define the simplified beta sigmoid model (simp.bsm)
simp.bsm <- function(P, x, tmin=0){
  P  <- cbind(P)  
  ropt  <- P[1]
  topt  <- P[2]
  tmax  <- P[3]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   
  ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*(
  (x-tmin)/(topt-tmin))^((topt-tmin)/(tmax-topt))   
}

# For the original beta sigmoid model 
ini.val2 <- c(40, 30, 5, 50)
xlab2    <- "Time (d)"
ylab2    <- "Height (cm)"
re0      <- fitIPEC( bsm, x=x3, y=y3, ini.val=ini.val2, 
                     xlim=NULL, ylim=NULL, xlab=xlab2, ylab=ylab2, 
                     fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par3  <- re0$par
par3
re1   <- derivIPEC( bsm, theta=par3, x3[20], method="Richardson", 
                    method.args=list(eps=1e-4, d=0.11, 
                    zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
re1
re2   <- curvIPEC( bsm, theta=par3, x=x3, y=y3, alpha=0.05, method="Richardson",                    
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
re2

# For the simplified beta sigmoid model (in comparison with the original beta sigmoid model)
ini.val7 <- c(40, 30, 50)

RESU0 <- fitIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7, 
                  xlim=NULL, ylim=NULL, xlab=xlab2, ylab=ylab2, 
                  fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par7  <- RESU0$par
par7

RESU2 <- curvIPEC( simp.bsm, theta=par7, x=x3, y=y3, alpha=0.05, method="Richardson",             
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
RESU2
##################################################################################################


#### Example 4 ###################################################################################
# Weight of cut grass data (Pattinson 1981)
# References:
#   Clarke, G.P.Y. (1987) Approximate confidence limits for a parameter function in nonlinear 
#       regression. J. Am. Stat. Assoc. 82, 221-230.
#   Gebremariam, B. (2014) Is nonlinear regression throwing you a curve? 
#       New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014.
#       http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
#   Pattinson, N.B. (1981) Dry Matter Intake: An Estimate of the Animal
#       Response to Herbage on Offer. unpublished M.Sc. thesis, University
#       of Natal, Pietermaritzburg, South Africa, Department of Grassland Science.

# 'x4' is the vector of weeks after commencement of grazing in a pasture
# 'y4' is the vector of weight of cut grass from 10 randomly sited quadrants

x4 <- 1:13
y4 <- c(3.183, 3.059, 2.871, 2.622, 2.541, 2.184, 
        2.110, 2.075, 2.018, 1.903, 1.770, 1.762, 1.550)

# Define the first case of Mitscherlich equation
MitA <- function(P1, x){
    P1[3] + P1[2]*exp(P1[1]*x)
}

# Define the second case of Mitscherlich equation
MitB <- function(P2, x){
    log( P2[3] ) + exp(P2[2] + P2[1]*x)
}

# Define the third case of Mitscherlich equation
MitC <- function(P3, x, x1=1, x2=13){
    theta1 <- P3[1]
    beta2  <- P3[2]
    beta3  <- P3[3]
    theta2 <- (beta3 - beta2)/(exp(theta1*x2)-exp(theta1*x1))
    theta3 <- beta2/(1-exp(theta1*(x1-x2))) - beta3/(exp(theta1*(x2-x1))-1)
    theta3 + theta2*exp(theta1*x)
}

ini.val3 <- c(-0.1, 2.5, 1)
r0       <- fitIPEC( MitA, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,  
                     fig.opt=TRUE, control=list(
                     trace=FALSE, reltol=1e-20, maxit=50000) )
parA     <- r0$par
parA
r2 <- curvIPEC( MitA, theta=parA, x=x4, y=y4, alpha=0.05, method="Richardson", 
                method.args=list(eps=1e-4, d=0.11, 
                zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
r2

ini.val4 <- c(exp(-0.1), log(2.5), 1)

R0       <- fitIPEC( MitB, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,  
                     fig.opt=TRUE, control=list(
                     trace=FALSE, reltol=1e-20, maxit=50000) )
parB     <- R0$par
parB
R2       <- curvIPEC( MitB, theta=parB, x=x4, y=y4, alpha=0.05, method="Richardson", 
                      method.args=list(eps=1e-4, d=0.11, 
                      zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
R2

ini.val6 <- c(-0.15, 2.52, 1.09)
RES0     <- fitIPEC( MitC, x=x4, y=y4, ini.val=ini.val6, xlim=NULL, ylim=NULL,  
                     fig.opt=TRUE, control=list(trace=FALSE, 
                     reltol=1e-20, maxit=50000) )
parC     <- RES0$par
parC
RES2     <- curvIPEC( MitC, theta=parC, x=x4, y=y4, 
                      tol=1e-20, alpha=0.05, method="Richardson", 
                      method.args=list(eps=1e-4, d=0.11, 
                      zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
RES2
##################################################################################################


#### Example 5 ###################################################################################
# Conductance of a thermistor (y5) as a function of temperature (x5) (Meyer and Roth, 1972)
# References:
#   Page 120 in Ratkowsky (1983)
#   Meyer, R.R. and Roth P.M. (1972) Modified damped least squares:
#       A algorithm for non-linear estimation. J. Inst. Math. Appl. 9, 218-233.

x5 <- seq(50, 125, by=5)
y5 <- c( 34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, 
         8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872 )
y5 <- log(y5)

conduct.fun <- function(P, x){
-P[1]+P[2]/(x+P[3])
}

ini.val5 <- c(5, 10^4, 0.5*10^3)
RE0      <- fitIPEC( conduct.fun, x=x5, y=y5, ini.val=ini.val5, xlim=NULL, ylim=NULL,  
                     fig.opt=TRUE, control=list(
                     trace=FALSE, reltol=1e-20, maxit=50000) )
par5     <- RE0$par
par5
RE2      <- curvIPEC( conduct.fun, theta=par5, x=x5, y=y5, alpha=0.05, method="Richardson", 
                      method.args=list(eps=1e-4, d=0.11, 
                      zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
RE2
##################################################################################################


#### Example 6 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References
# Pages 255 and 270 in Bates and Watts (1988)
# Marske, D. (1967) Biochemical oxygen demand data interpretation using sum of squares surface.
#     M.Sc. Thesis, University of Wisconsin-Madison.

# 'x6' is a vector of time (in d)
# 'y6' is a vector of biochemical oxygen demand (mg/l)

x6 <- c(1, 2, 3, 4, 5, 7)
y6 <- c(8.3, 10.3, 19.0, 16.0, 15.6, 19.8)

BOD.fun <- function(P, x){
  P[1]*(1-exp(P[2]*x))
}

ini.val7 <- c(210, 0.06)
consq0   <- fitIPEC( BOD.fun, x=x6, y=y6, ini.val=ini.val7, xlim=NULL, ylim=NULL,  
                     fig.opt=TRUE, control=list(
                     trace=FALSE, reltol=1e-20, maxit=50000) )
par7     <- consq0$par
par7
consq2   <- curvIPEC( BOD.fun, theta=par7, x=x6, y=y6, alpha=0.05, method="Richardson", 
                      method.args=list(eps=1e-4, d=0.11, 
                      zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
consq2
##################################################################################################


#### Example 7 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References:
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
#     52, 391-396.   

data(isom)
Y <- isom[,1]
X <- isom[,2:4]

# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)

isom.fun <- function(theta, x){
  x1     <- x[,1]
  x2     <- x[,2]
  x3     <- x[,3]
  theta1 <- theta[1]
  theta2 <- theta[2]
  theta3 <- theta[3]
  theta4 <- theta[4]
  theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}

par8  <- c(35.92831619, 0.07084811, 0.03772270, 0.16718384) 
cons2 <- curvIPEC( isom.fun, theta=par8, x=X, y=Y, alpha=0.05, method="Richardson", 
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
cons2
##################################################################################################

[Package IPEC version 1.1.0 Index]