jacobian {pracma} | R Documentation |
Jacobian Matrix
Description
Jacobian matrix of a function R^n –> R^m .
Usage
jacobian(f, x0, heps = .Machine$double.eps^(1/3), ...)
Arguments
f |
|
x0 |
Numeric vector of length |
heps |
This is |
... |
parameters to be passed to f. |
Details
Computes the derivative of each funktion f_j
by variable x_i
separately, taking the discrete step h
.
Value
Numeric m
-by-n
matrix J
where the entry J[j, i]
is \frac{\partial f_j}{\partial x_i}
, i.e. the derivatives of function
f_j
line up in row i
for x_1, \ldots, x_n
.
Note
Obviously, this function is not vectorized.
References
Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical Mathematics. Second Edition, Springer-Verlag, Berlin Heidelberg.
See Also
gradient
Examples
## Example function from Quarteroni & Saleri
f <- function(x) c(x[1]^2 + x[2]^2 - 1, sin(pi*x[1]/2) + x[2]^3)
jf <- function(x)
matrix( c(2*x[1], pi/2 * cos(pi*x[1]/2), 2*x[2], 3*x[2]^2), 2, 2)
all.equal(jf(c(1,1)), jacobian(f, c(1,1)))
# TRUE
[Package pracma version 2.4.4 Index]