ucov {ICSClust} | R Documentation |
Simple robust estimates of scatter
Description
Compute a one-step M-estimator of scatter with weights based on Mahalanobis distances, or a simple related estimator that is based on a transformation.
Usage
scov(x, beta = 0.2)
ucov(x, beta = 0.2)
Arguments
x |
a numeric matrix or data frame. |
beta |
a positive numeric value specifying the tuning parameter of the estimator (defaults to 0.2), see ‘Details’. |
Details
For a sample , a positive and decreasing weight function
,
and a tuning parameter
, the one-step M-estimator
of scatter is defined as
where
denotes the squared Mahalanobis distance of observation
from the sample mean
based on the sample
covariance matrix
. Here, the weight
function
is used.
A simple robust estimator that is consistent under normality is obtained via the transformation
Value
A numeric matrix giving the estimate of the scatter matrix.
Author(s)
Andreas Alfons and Aurore Archimbaud
References
Caussinus, H. and Ruiz-Gazen, A. (1993) Projection Pursuit and Generalized Principal Component Analysis. In Morgenthaler, S., Ronchetti, E., Stahel, W.A. (eds.) New Directions in Statistical Data Analysis and Robustness, 35-46. Monte Verita, Proceedings of the Centro Stefano Franciscini Ascona Series. Springer-Verlag.
Caussinus, H. and Ruiz-Gazen, A. (1995) Metrics for Finding Typical Structures by Means of Principal Component Analysis. In Data Science and its Applications, 177-192. Academic Press.
Ruiz-Gazen, A. (1996) A Very Simple Robust Estimator of a Dispersion Matrix. Computational Statistics & Data Analysis, 21(2), 149-162. doi:10.1016/0167-9473(95)00009-7.
See Also
ICS_ucov()
, tcov()
, ICS_tcov()