ucov {ICSClust}R Documentation

Simple robust estimates of scatter

Description

Compute a one-step M-estimator of scatter with weights based on Mahalanobis distances, or a simple related estimator that is based on a transformation.

Usage

scov(x, beta = 0.2)

ucov(x, beta = 0.2)

Arguments

x

a numeric matrix or data frame.

beta

a positive numeric value specifying the tuning parameter of the estimator (defaults to 0.2), see ‘Details’.

Details

For a sample \boldsymbol{X}_{n} = (\mathbf{x}_{1}, \dots, \mathbf{x}_n)^{\top}, a positive and decreasing weight function w, and a tuning parameter \beta > 0, the one-step M-estimator of scatter is defined as

\mathrm{SCOV}_{\beta}(\boldsymbol{X}_{n}) = \frac{\sum_{i=1}^{n} w(\beta \, r^{2}(\mathbf{x}_{i})) (\mathbf{x}_{i} - \mathbf{\bar{x}}_{n}) (\mathbf{x}_{i} - \mathbf{\bar{x}}_{n})^{\top}}{\sum_{i=1}^{n} w(\beta \, r^{2}(\mathbf{x}_{i}))},

where

r^{2}(\mathbf{x}_{i}) = (\mathbf{x}_{i} - \mathbf{\bar{x}}_{n})^{\top} \mathrm{COV}(\boldsymbol{X}_n)^{-1} (\mathbf{x}_{i} - \mathbf{\bar{x}}_{n})

denotes the squared Mahalanobis distance of observation \mathbf{x}_{i} from the sample mean \mathbf{\bar{x}}_{n} based on the sample covariance matrix \mathrm{COV}(\boldsymbol{X}_n). Here, the weight function w(x) = \exp(-x/2) is used.

A simple robust estimator that is consistent under normality is obtained via the transformation

\mathrm{UCOV}_{\beta}(\boldsymbol{X}_{n}) = (\mathrm{SCOV}_{\beta}(\boldsymbol{X}_{n})^{-1} - \beta \, \mathrm{COV}(\boldsymbol{X}_{n})^{-1})^{-1}.

Value

A numeric matrix giving the estimate of the scatter matrix.

Author(s)

Andreas Alfons and Aurore Archimbaud

References

Caussinus, H. and Ruiz-Gazen, A. (1993) Projection Pursuit and Generalized Principal Component Analysis. In Morgenthaler, S., Ronchetti, E., Stahel, W.A. (eds.) New Directions in Statistical Data Analysis and Robustness, 35-46. Monte Verita, Proceedings of the Centro Stefano Franciscini Ascona Series. Springer-Verlag.

Caussinus, H. and Ruiz-Gazen, A. (1995) Metrics for Finding Typical Structures by Means of Principal Component Analysis. In Data Science and its Applications, 177-192. Academic Press.

Ruiz-Gazen, A. (1996) A Very Simple Robust Estimator of a Dispersion Matrix. Computational Statistics & Data Analysis, 21(2), 149-162. doi:10.1016/0167-9473(95)00009-7.

See Also

ICS_ucov(), tcov(), ICS_tcov()


[Package ICSClust version 0.1.0 Index]